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Abstract 

Social network analysis (SNA) is used by the DoD to describe and analyze social 

networks, leading to recommendations for operational decisions.  However, social 

network models are constructed from various information sources of indeterminate 

reliability.  Inclusion of unreliable information can lead to incorrect models resulting in 

flawed analysis and decisions.  This research develops a methodology to assist the analyst 

by quantitatively identifying and categorizing information sources so that determinations 

on including or excluding provided data can be made. 

This research pursued three main thrusts.  It consolidated binary similarity 

measures to determine social network information sources’ concordance and developed a 

methodology to select suitable measures dependent upon application considerations.  A 

methodology was developed to assess the validity of individual sources of social network 

data.  This methodology utilized source pairwise comparisons to measure information 

sources’ concordance and a weighting schema to account for sources’ unique 

perspectives of the underlying social network.  Finally, the developed methodology was 

tested over a variety of generated networks with varying parameters in a design of 

experiments paradigm (DOE).  Various factors relevant to conditions faced by SNA 

analysts potentially employing this methodology were examined.  The DOE was 

comprised of a 24 full factorial design augmented with a nearly orthogonal Latin 

hypercube.  A linear model was constructed using quantile regression to mitigate the non-

normality of the error terms. 
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A QUANTITATIVE METHODOLOGY FOR VETTING “DARK NETWORK” 

INTELLIGENCE SOURCES FOR SOCIAL NETWORK ANALYSIS 

 

I. Introduction 

The initial decade of the 21st century has been characterized by the United States 

in direct conflict with terrorist organizations and insurgent groups, while attempting to 

mitigate the effects of organized criminal enterprises, drug cartels, human trafficking, 

piracy, and cyber crime.  These entities utilize support networks composed of money 

laundering, weapons smuggling, illegal technology proliferation and other illicit 

activities.  Dealing with this myriad of interconnected organizations and activities has led 

to the development of nontraditional analytic techniques in support of strategies 

addressing these threats to national security.  One such analytic technique brought to bear 

on this problem set is Social Network Analysis (SNA), not necessarily a new technique, 

but novel in its relatively recent application to the national security arena.  As such, the 

Department of Defense’s (DoD) initial unfamiliarity with Social Network Analysis has 

now transitioned to various instantiations in levels of application and expertise in 

numerous DoD organizations.   The DoD’s use of SNA as a military tool against an array 

of organizations has delivered successes and failures in providing useful analysis on the 

target subject’s inner workings and identifying strategies to inhibit these targets. 

Social Network Analysis is a quantitative methodology to model networked 

actors’ behavior.  SNA focuses on the relationships among actors and the implications on 

both collective and individual behavior resulting from the structure of the network and 
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the patterns in the relationships.  The network structure portrays the pattern of 

relationships among the actors and models organized collective behavior.  This structure 

can affect, promote, and constrain individual actor behavior (Wasserman & Faust, 1994, 

pp. 3-4).  The quantitative nature of SNA methodology enables the characterization of the 

network structure and its implications upon collective and individual behavior, 

identification of actors significantly involved in organized behavior, and the 

determination of groups of actors contained within the structure.  Additionally, the 

quantitative basis enables detection of changes over time in network structure, actor 

prominence, and group formulation or dissolution (Wasserman & Faust, 1994, pp. 9-10). 

The network models used in this type of analysis are dependent upon the veracity 

of the information sources providing social network data.  Social network information 

sources may provide unreliable information leading to inaccurate conclusions from the 

model.  The information sources may confirm or discredit reports from other sources, 

leaving the SNA analysts to arbitrate what data is used in the social network model.  This 

research addresses the lack of suitable quantitative methodological approaches to aid 

SNA analysts facing this complex problem. 

SNA methodologies have predominantly evolved from research conducted on 

open networks such as businesses, governmental organizations, social groups, and 

activities where data is voluntary provided or permissibly collected.  In contrast, 

adversarial organizations considered threats to U.S. national security are structured and 

have mechanisms emplaced minimizing the effectiveness of traditional social science 

SNA data collection techniques.  These organizational mechanisms present additional 

challenges in applying SNA to these problem sets.  To address the associated 
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implications on modeling, a conceptual understanding of these organizations and 

associated mechanisms is required. 

1.1 Dark Networks 

The inherent complexity of dealing with the wide range of organizations subject 

to interest by the DoD is beginning to be deciphered by several characterization and 

generalization efforts initialized in the academic realm which show promising utility in 

addressing the problem set.  One such notion, coined “dark networks,” serves as a basis 

for a conceptual framework suitable to categorize and address the range of potential 

organizational adversaries faced by the DoD.  

Raab and Milward (2003) introduced and defined “dark networks” as actors and 

organizations that cooperate in activities that are both covert and illegal, in contrast to 

“bright networks”, formally defined as “a legal and overt governance form that is 

supposed to create benefits for the participating actors and to advance the common good 

and does not—at least intentionally—harm people”; dark networks’ illegal activities are 

not meant to be visible (Raab & Milward, 2003, p. 419; Milward & Raab, 2006, p. 334).  

The preponderance of related academic literature examining group and organizational 

behaviors is derived from research centered in characterized social interactions and 

improving organizational efficiency and effectiveness of bright networks.  Efforts 

extending research findings derived from this academic literature for application against 

dark networks has grown dramatically since September 11, 2001. 

Dark networks as a framework appear to describe and address the litany of 

adversaries faced by the United States.  Applying organizational theory to identify and 
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model vulnerabilities in dark network organizations may enable more efficient utilization 

of limited military and other agencies’ resources used in reducing or eliminating various 

dark networks’ capabilities.  The difficulty lies in accurately distilling generalizations, the 

conditions for which they are applicable, and their implications from the spectrum of 

organizations characterized as dark networks. 

Dark networks differ from overt “bright” networks in several dimensions.  

Stemming from dark network members’ desires for their operations to generally remain 

undetected, their structures contain specific aspects and characteristics ensuring a 

sustainable amount of security and organizational resilience.  Some of these structural 

characteristics are intentional designs, while others are a function of how the networks 

form and evolve over their lifespan.  The security needs of dark networks manifest 

themselves intra-organizationally, in the relationships among members; inter-

organizationally, between various organizations involved with dark network activities; 

and externally, as dark networks interface with the general population. 

Intra-organizationally, members’ relations are defined by trust due to the risks 

they incur for participation in illegal activities, or the mere association of being members 

of the illicit organization (Erickson, 1981, p. 195).  Binding the organization together, 

“integration is primarily based on trust relations between individual persons and their 

complementary interest (Raab & Milward, 2003, p. 432).”  These trust relations can be 

established and reinforced within the organization via ideological commitments, 

indoctrination, joint participation in activities, common fate sentiment, and other 

socialization processes.  Due to the high need for security and its resultant demand for 

trust among an organization’s members, “risk enforces recruitment along lines of trust 
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and, thus, through preexisting networks of relationships, which set the limits of the secret 

society’s structure (Erickson, 1981, p. 188).”  Dark network organizations’ growth and 

ability to reconstitute its personnel is dependent upon its members’ other social networks, 

which are not necessarily based in illegal behavior, but may stem from familial, 

educational, geographical, and other social contexts. 

Members of dark network organizations, who are generally included due to 

preexisting social connections, create an environment which reinforces continued 

affiliation and activity with the organization.  “Because risk is such a big factor, 

professional and personal lives are intermeshed and almost indistinguishable (Raab & 

Milward, 2003, p. 431).”  Despite these personal connections potentially existing among 

members, the overall “structure of covert networks will tend to be as sparse as possible to 

achieve the goals of the participating actors (Raab & Milward, 2003, p. 433).”  Dark 

network organizations structure themselves in a manner to insulate and limit possible 

damage due to individual defections, arrest, capture, or compromise.  For these 

organizations, security is paramount and crucial for them to continue to conduct 

operations in pursuit of their goals, and their organizational structure reflects that 

concern.  

Dark networks possess loose connections that drive interactions, mutually 

beneficial behavior and cooperation among organizations engaged in illegal activity.  

Organizations conducting illicit activities require resources; organizational specialization 

and market segmentation has occurred similar to overt networks.  Illegal narcotic 

production, smuggling and distribution organizations may rely upon weapons smuggling 

organizations to supply arms.  Organizations engaged in kidnapping may utilize 
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organizations specializing in money laundering to handle that aspect of the operation.  

Enabling these transactions are “actors who function as brokers between these different 

networks (Raab & Milward, 2003, p. 431).”  However, these interactions among dark 

networks and their composite organizations do not obviate the need for security.  

Similarly to specific organizations structuring themselves to promote security, the 

transactions, interconnectivity, alliances and cooperation, occurring within dark networks 

are structured under a security conscious paradigm.   “Dark networks try to function with 

as few ties as possible (Milward & Raab, 2006, p. 353).”  Minimizing inter-

organizational connections insulates individual organizations from potential compromise 

or exposure from necessary transactions and interactions. 

Dark networks’ preoccupation with security and the nature of their activities 

present a unique challenge to inter-organizational transactions.   “Dark networks cannot 

rely on formal institutions or the legal systems for dispute resolution (Raab & Milward, 

2003, p. 430).”  As such, “persuasion, exchange, and negotiation are the central 

mechanisms for management and conflict resolution in overt networks, coercion and 

physical force are the distinctive characteristic of covert networks (Raab & Milward, 

2003, p. 432).”  Due to this, “transaction costs in covert networks are higher than those in 

overt networks (Raab & Milward, 2003, p. 432).”  Despite these deterrents to inter-

organizational interaction within dark networks, it occurs due to organizations’ necessity 

of acquiring resources, sometimes unique resources, in order to achieve their aims. 

The United States’ National Security establishment has in some instances dealt 

with dark networks over a substantial amount of time.  Milward and Raab (2006, p. 336, 

351) note this “resilience of these [dark] networks in the face of massive efforts to control 
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them,” defining resilience as “the ability to recover from or to resist being affected by 

some shock, insult, or disturbance.”  In the dark networks’ organizational paradigm, 

resilience is the ability of the organization “to avoid disintegration when coming under 

stress (Milward & Raab, 2006, p. 351).”  Despite numerous governmental programs and 

efforts to inhibit dark networks, it appears to be an interminable problem. 

1.2 SNA’s Utility in Analyzing Dark Networks 

The desire to understand dark network organizations via identifying roles and 

their associated individuals brings forth the need for a methodological approach.  One 

methodology displaying high promise for fulfilling this analytic gap is Social Network 

Analysis (SNA).  Several studies have examined and proposed utilizing SNA to study 

dark networks, covering the gamut from organized criminal networks to insurgencies and 

terrorist groups (Sparrow, 1991; Coles, 2001; Reed, 2006; Ressler, 2006; van der Hulst, 

2009) with several introducing new methodologies and algorithms specifically adapted to 

these problem sets (Renfro, 2001; Sterling, 2004; Clark, 2005; Hamill, 2006; Farley, 

2007; Geffre, 2007; Herbranson, 2007; Seder, 2007; Leinart, 2008; Kennedy, 2009).  

Acquired knowledge of dark networks’ and their organizations’ structures, operations’ 

processes and mechanisms, coupled with discerning roles and associated individuals has 

the potential to grant understanding into inherent vulnerabilities that are susceptible to 

exploitation. 

Social Network Analysis is an analytic methodology encompassing social 

network data collection methodologies through mathematical analysis and visualization.  

Social network data is collected, compiled and filtered to create a social network model 
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representing underlying social dimensions of interactions among actors scoped to answer 

specific questions.  A variety of mathematical techniques are then applied to analyze the 

social network model to generate insights into phenomena of operational significance.  

Generally, Social Network Analysis is employed to: model actors and their relationships 

to depict the structure of the network, analyze the impact of this structure on the function 

of the network, analyze the impact of this structure on individuals within the network, 

and assess changes over time (Wasserman & Faust, 1994, pp. 3, 9-10). 

Of significance, the social network model is constructed under a specific context.  

The data is collected and the model is generally constructed for a specific analytic 

purpose, a set of “real world” questions on which the subsequent analysis is attempting to 

shed light.    This context and the associated questions drive the analyst’s selection of 

SNA analytic techniques to apply to the social network model.  As these analytic 

techniques are mathematically based, they each have associated assumptions.  These 

assumptions precipitate the social network data requirements in order to satisfy the 

mathematical requirements of the chosen SNA analytic techniques.  The conclusions and 

interpretations derived from the SNA analytic techniques are dependent upon the 

contextual considerations of the social network model as well as the collected social 

network data. 

1.3 Problem Context 

In order to fully and accurately characterize a dark network organization, 

investigations must expand beyond purely “professional” relationships within an 

organizational context and explore other relation types, such as familial and social, to 
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ensure acquiring all relevant and pertinent information.  This requires a host of sources to 

provide the necessary data, of which several may be nontraditional or on the forefront of 

technical collection capabilities, burdened with additional encumbrances due to issues of 

data availability and/or legal authority to collect.  Expanding to personal social contexts 

introduces the problem of determining when the boundary of the network has been 

reached.   

Data collection is further confounded as dark network organizations are purposely 

attempting to remain opaque.  Data collection is conducted possibly in the face of 

adversarial active denial and deception measures.  Social Network Analysis of dark 

networks will surely be applied in an imperfect data situation, with certain data elements 

missing and others being corrupted or inaccurate. 

Social Network Analysis suffers from a lack of standardized adequacy criteria for 

data collection.  It is indeterminate whether enough data is present and appropriate to 

conduct a SNA or rely on its results in decision making.  This lack of criteria has left 

SNA analysts to self-determine when sufficient data has been collected to perform a SNA 

with limited intuition or guidelines of the corollary impact upon analytic results.  

Analytical conclusions are drawn and presented on data sets that may provide erroneous 

results due to an indeterminate significant amount of missing data or data corruption.  

These errors may be significant as they could produce analytic results that are counter to 

the true situation, leading to misappropriation of resources, improper strategy adoption, 

and erroneous targeting. 

Methods exist within academic literature for imputing missing data (Leinart, 

2008) and for attempting to probabilistically classify collected data as valid or invalid 
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(Butts, 2003).  However, there is no benchmark of when these methods should be applied 

in SNA.  A method currently does not exist to determine if a sufficient amount of data 

has been collected to perform SNA appropriately, inevitably resulting in incorrect 

conclusions being drawn from misapplication.  While undesirable, this may be acceptable 

if one is conducting a sociological study; however, it can be disastrous if applied to the 

national security arena and influence operations (law enforcement, military or civil.)  

In the arena of national security, erroneous results stemming from Social Network 

Analysis may produce substantial unintended consequences.  Decisions derived from the 

analysis may expend critical resources without generating any associated progress 

towards achieving national security objectives.  More damaging than inefficient 

utilization of resources, erroneous results precipitating unacceptable collateral damage, 

such as actions against innocent individuals and organizations, could hinder and restrain 

current and future operations.  Such mishaps may drive previously neutral individuals 

into dark network organizations or at least increase their support of the groups’ goals. 

Particularly when dealing with dark networks, improper strategy or poor targeting 

could potentially provide a strategic advantage to targeted organizations; conducting 

“organizational Darwinism” by removing non-effective actors from an organization may 

strengthen the organization while improving its overall effectiveness and ability to 

accomplish its objectives.  A possible example is large-scale arrests of low-level 

incompetent criminals in organized crime, leading to an organization comprised 

predominantly of very effective and efficient actors.  Dark network organizations are 

comprised of human beings, and as such, successful ones respond, adapt, and exhibit 

creativity when presented with adversity.  Government forces applying improper 
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strategies or targeting solutions could lead to adversary organizational alterations 

generating significant unintended consequences.  Hypothetically, removing adversary 

leadership personnel may lead to their replacement with individuals who are 

characterized as even less desirable, i.e. more violent, intelligent, dedicated, inspirational, 

and so forth. 

1.4 Problem Statement 

Social network analysis is used by the DoD and other government agencies to 

describe and analyze social networks, leading to recommendations for operational 

decisions.  However, social network models are constructed from various information 

sources of indeterminate reliability.  Inclusion of unreliable information can lead to 

incorrect models resulting in flawed analysis and decisions. 

It is critical for continued use of SNA by the DoD that methods are developed to 

determine if information sources reporting social network data are of sufficient reliability 

to allow the use of SNA techniques generating solutions within acceptable operational 

risk.  Formalized SNA includes various methodologies for social network data collection.  

The collected data must be contextually relevant and of sufficient quality and quantity.  

The contextual relevancy is a function of the specific problem set and the instantiated 

social network model.  Absent in Social Network Analysis are methods to determine if 

information sources are reporting data of sufficient quality and quantity to conduct SNA 

appropriately.  This gap is currently addressed via the Social Network analyst’s intuition 

on whether sufficient reliable data exists and is available to conduct the analysis or 

further data collection is warranted, or data imputation techniques need to be employed.  
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Analogous to confidence intervals in statistics, presenting SNA conclusions without an 

associated degree of confidence does not fully answer and address the questions 

precipitating the analysis. 

Current practice assumes that all social network analytic techniques are applicable 

under all data conditions despite growing evidence in the academic literature to the 

contrary.  Additionally, traditional application of SNA treats all obtained information on 

the social network equally, regardless of the acquisition means or source, depicted in 

Error! Reference source not found..  Adopting a term from the computer science 

discipline, data provenance refers to the origins of a piece of data and the process by 

which it was obtained (Buneman, Khanna, & Tan, 2000, p. 88).  It is presumed that some 

information sources providing social network data are more reliable in that their data is 

generally a more accurate representation of the social network under observation.  

Information sources established as being reliable should be considered differently than 

unreliable or untested sources in the construction of the social network model, portrayed 

in Figure I-2, particularly in the case of conflicting reporting.  The DoD utilizes SNA on 

problem sets, such as dark networks, with social network data acquired through various 

collection means.  Due to the nature of the problem set, SNA applied in this context has 

additional concerns of reliable, unreliable, and deceptive sources of information. 
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Figure I-1 SNA Model Construction – Current Practice 
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Figure I-2 Constructing SNA Models Considering Source Reliability 

 
 

1.5 Research Objectives 

This dissertation conducts a line of research investigating the construction of a 

social network model in the face of reliable and unreliable information sources.  Along 

those lines, this research developed a methodology to quantitatively identify and 

categorize information sources so that determinations on including or excluding their 

provided data can be made.  This research proceeded with the following goals: 

 Consolidate similarity measures to determine social network information 

sources’ concordance and develop a methodology to select suitable measures 

dependent upon application considerations.  Many of these similarity measures 
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have been introduced across various disciplines and no complete consolidated 

listing is available.  Despite numerous similarity measures existing in the 

literature, no guidelines exist for selecting suitable measures for a given 

application.  Developing a methodology to select similarity measures for social 

network information source comparisons will enable quantitative means to 

evaluate confirmations and dissentions among sources. 

 Develop a methodology to assess validity of individual sources of social network 

data.  One method of constructing a social network data set is compiling 

information from various sources.  When examining dark networks, it is 

imperative to consider that due to the nature of organizations involved some 

sources will be delivering only limited network perspectives, i.e. imperfect data, 

as well as professing corrupt data, either intentionally or unintentionally.  

Evaluating and verifying various sources will provide a means to construct a 

social network data set, hopefully, minimizing the impact of imperfect data by 

appropriately weighting sources that provide verified information. 

 Test the methodology over a variety of generated networks with varying 

parameters in a design of experiments paradigm.  Dark networks may appear in 

various regimes of network parameter space.  Identifying network parameter 

subspaces and examining SNA applicability for networks contained within those 

subspaces will enable assessment of the appropriateness of specific SNA 

techniques on dark network organizations. 
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1.6 Dissertation Overview 

This dissertation is organized as follows: Chapter II provides a literature review of 

Social Network Analysis with a focus on the impact of imperfect data, which includes 

missing and corrupt data elements.  Chapter III discusses the methodological approach to 

address the social network information source assessment problem introduced in this 

introduction.  Additionally, Chapter III provides the experimental design to be employed 

to assess the methodology’s performance.  Chapters IV and V discuss in detail 

components of the methodology and present analytical results of the experimentation.  

Chapter VI employs the developed methodology in a case study format for demonstration 

purposes.  Chapter VII reviews the contributions of this research, discusses assumptions 

and limitations, and indicates future research threads to explore. 
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II. Literature Review 

This chapter begins with an introduction to the modeling aspects of social 

network analysis applicable to dark networks, followed by a brief overview of several 

SNA measures referenced in imperfect data literature.  Next, a discussion of the social 

science underpinnings and the relation to social network modeling is presented.  A 

detailed review of the academic literature describes current efforts to date on the impact 

of imperfect data on social network analysis is then provided.  Methodologies in the 

literature to address the issues associated with imperfect data in SNA, namely consensus 

structure aggregation and a Bayesian approach, are presented with discussions of their 

limitations.  Following the social science underpinnings and the impact of imperfect data, 

a discussion of methods and techniques necessary for the methodology presented in 

Chapter III is discussed.  Social network data sources are explored, followed by statistical 

methods to measure source agreement in reporting.  Next, classifier performance metrics 

are described.  Finally, statistical analysis techniques employed in Chapter IV are 

described. 

2.1 Social Network Analysis 

Social network analysis focuses on relationships among entities.  This allows 

inferences to be drawn from patterns of relationships or the implications of certain 

structures upon actor behavior as well as the impact of actors upon other entities in a 

social network structure (Wasserman & Faust, 1994, p. 3).  Social network analysis 

models social interactions among entities as a network with mathematical formulization, 

enabling algorithms, procedures and computations based in social science theory.  



www.manaraa.com

 

II-2 

 

Presented here is a brief overview of social network analysis, some of its components, 

and commonly used algorithms and pertinent calculations in understanding the impact of 

imperfect data on SNA results. 

2.1.1 Actors. 

Various social entities can be envisioned as actors within a social network.  

Countries, organizations, groups, social units, or individuals can be modeled as actors in 

social network analysis.  If the social network analysis is constrained to one type of actor, 

for example only deals with individuals, it is defined as a one-mode network.  If the 

analysis contains two actor types, such as individuals and their affiliations with 

organizations, the model is defined as a two-mode network (Wasserman & Faust, 1994, 

p. 17).  Predominantly, social network analysis is applied to one-mode networks.  They 

are modeled as nodes, or vertices, in a network graph representation. 

2.1.2 Relationships. 

Actors are connected via relationships, also referred to as relational ties.  A 

relationship defines the linkage between actors.  There are many different kinds of 

relationships reflected in social network analysis, which are categorized by relation type 

summarized in Table II-1.  A relationship between two actors creates a structure termed a 

dyad.  The relationships among three actors are referred to as a triad.  Of note, there are 

several combinations of relationship pairings that could constitute a triad, i.e. only a 

subset of the potential relationships exist between all pairing within the triad (Wasserman 

& Faust, 1994, p. 18).  Relationships are modeled as arcs or edges in a network graph 

representation. 
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Table II-1 Relation Types 
Relation Type Description (Examples) 

Individual evaluations 
Measurements of positive or negative affect for 
another actor; sometimes referenced as sentiment.  
(Ex: friendship, respect) 

Transfer of material resources 
Transfer of goods, specific forms of social 
support. (Ex: exchanges of gifts) 

Transfer of non-material resources 
Communication, sending/receiving information. 
(Ex: sending a message) 

Interaction 

Physical interaction of actors; presence at the 
same place at the same time. 
(Ex: sitting next to another actor, two actors 
attending the same meeting) 

Movement 
Physical movement; social movement. 
(Ex: changing location, change in social status) 

Formal roles 
Power and authority between actors. 
(Ex: boss/employee relationship) 

Kinship 
Familial and marriage relationships. 
(Ex: parent, spouse) 

(Wasserman & Faust, 1994, pp. 37-38)

 

2.1.3 Relations. 

Social relations among actors may be based upon a perception of a relationship; 

referred to in the literature as the cognitive network (Wasserman & Faust, 1994, p. 51).  

Relations that are determined by perception have significant implications upon the 

relationships among actors that are ascertained for an analysis.  Perceived ties may be 

more appropriate for analysis conducted on phenomenon such as influence, attitude or 

opinion development and propagation through a network’s actors.  On the contrary, 

Marsden suggests that relations defined by interactions or transfers of goods or 

information may be more appropriate for analysis on diffusion of material through a 

network (Marsden, 1990, p. 437). 
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A temporal aspect to relations may exist within a social network.  Relationships 

may be episodic, transient, or a single-occurrence between actors, or be based upon 

recurrent interactions or exchanges (Marsden, 1990, p. 437).  This temporal nature of 

relationships may necessitate a scoping of the analysis to consider only a specified time 

frame of activity.  Additionally, thresholds, based upon transaction or interaction 

frequency or intensity, may need to be established to confirm the presence of a 

relationship at a significant level between two actors for inclusion into the analysis. 

2.1.3.1 Directed Relations. 

Some relation types may imply directionality.  As many of the relation types 

involve a transfer of a resource or information, a direction of the relationship is defined 

by the sender and the receiver of the resource.  Additionally, non-transfer relations can 

involve a direction.  For example, a boss giving orders to a subordinate implies a 

direction of the relationship, in this case the boss exerting authority over the subordinate 

(Wasserman & Faust, 1994, pp. 121-122).   

2.1.3.2 Asymmetric Relations. 

As a result of directed relations, it is conceivable that a relationship between one 

actor and another is not reciprocated.  An example is a relation type that involves choice.  

If actors choose the relationship with another actor, the other actor may choose to not 

respond with the same relationship back to the sender.  For relation types that are based 

upon transfer, a sender could pass resources to a recipient and the recipient may not 

transfer resources back to the original sender.  For non-transfer relations, such as 
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affection, it is possible for an actor to express a sentiment, such as love or respect, for 

another actor that is not returned (Wasserman & Faust, 1994, p. 122). 

2.1.3.3 Valued Relations. 

A relationship between actors in some instances can be valued to describe the 

strength of the relationship.  The measurement generally attempts to reflect the intensity 

of the relationship, as detected by proxies such as amount or frequencies of interactions 

(Wasserman & Faust, 1994, p. 140). 

2.1.3.4 Multiple Relations. 

If multiple relations are used to model a social network, multiple relationships 

among two actors could be present (Wasserman & Faust, 1994, p. 146).  An example 

could be co-workers, denoting a formal role, who are also friends, representing an 

individual evaluation.   

2.1.4 Data Representation. 

The predominant data structure used to represent social network data is the 

sociomatrix, more typically referred to as an adjacency matrix in operations research.  It 

is a square matrix where each row or column represents an actor within the network.  The 

common convention maintains that the actors are in identical order for the rows and 

columns.  If a relationship is present between actors i and j, the matrix element of the ith 

row and jth column, xij, of matrix X is set to one, as exemplified in Table II-2 and its 

associated social network graph displayed in Figure II-1.  Additionally, if the relation is 

undirected, the matrix element of the jth row and ith column, xji, of matrix X is set to one, 

ensuring the resultant matrix is symmetric.  If a relationship is not present, xij is set to 
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zero and xji is set to zero for symmetric relations.  Thus, for undirected graphs the 

adjacency matrix will be symmetric, and for directed graphs may be asymmetric 

(Wasserman & Faust, 1994, pp. 150-151).  For valued relations, matrix element xij, 

describing the relationship between node i and node j, is set to the value of the 

relationship, commonly referred to as a weight reflecting the strength or intensity of the 

relationship, as opposed to being set to one.  Multiple relations may involve multiple 

adjacency matrices, each one representing a single relation. 

2.2 SNA Measures 

Marsden (1990) highlights the importance of the purpose of utilizing measures to 

characterize the relationship between the measure and its foundational sociological or 

psychological underpinnings.  Utilizing measures to provide a precise description of the 

social ties that compose a network requires a different level of accuracy than from using 

measures as indicators of differences between individuals within a network or between 

networks’ structural properties. 

Table II-2 Notional Adjacency Matrix (Directed Graph) 
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2.2.1 SNA Nodal Measures. 

Many questions, in particular when examining dark networks, focus upon the 

relative importance of individual actors within the network.  A host of measures derived 

from calculations based upon the network structure are available to characterize 

individual actor relative importance.  Presented here is a subset of available SNA nodal 

measures, selected due to their common usage within SNA, specifically in literature 

addressing imperfect social network data. 

2.2.1.1 Degree. 

Nodal degree is the number of direct relationships with other actors possessed by 

an actor.  It is simply the total number of edges incident to a node.  For a network with 

undirected dichotomous edges, the degree of node v, CD(v), is the number of immediate 

neighbors node v possesses and can be computed by summing the corresponding row or 

 
Figure II-1 Social Network Graph Based upon Table II-2 
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column of the adjacency matrix, A, as either will produce the same result as shown in 

Equation 1) (Wasserman & Faust, 1994, pp. 100, 163).  The degree can be normalized, 

஽ܥ
ᇱ ሺݒሻ, by dividing the degree of each node by the maximum possible value of n – 1, with 

n denoting the number of nodes in the network, as displayed in Equation (2.2) 

(Wasserman & Faust, 1994, pp. 178-179). 

ሻݒ஽ሺܥ  ൌ෍ܣ௜௩
௜

ൌ෍ܣ௩௝
௝

 (2.1) 

 
஽ܥ
ᇱ ሺݒሻ ൌ

ሻݒ஽ሺܥ
݊ െ 1

 (2.2) 

Degree centrality is a reflection of an actor’s potential involvement in 

communication.  Actors with high degree centrality are considered to be “in the thick of 

things” and “focal point[s] for communication” (Freeman, 1978/1979, pp. 219-220).  

However, when applied to dark networks, actors with high degree centrality may more 

accurately reflect “who you know most about, rather than who is central or pivotal in any 

structural sense (Sparrow, 1991, p. 256).” 

2.2.1.2 In-Degree. 

Nodal in-degree is the number of relationships that are directed from other actors 

into an actor.  It is the total number in incoming edges incident to a node.  For a network 

with directed dichotomous edges, the in-degree of node v, CID(v), is the number of 

neighbors with directed arcs to node v.  It can be computed by summing the 

corresponding column of the adjacency matrix A (Wasserman & Faust, 1994, pp. 126-

127). 
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ሻݒூ஽ሺܥ  ൌ෍ܣ௩௝
௝

 (2.3) 

2.2.1.3 Out-degree. 

Nodal out-degree is the number of relationships that are directed from an actor to 

other actors.  It is the total number in outgoing edges incident to a node.  For a network 

with directed dichotomous edges, the out-degree of node v, COD(v), is the number of 

directed arcs emanating from node v.  It can be computed by summing the corresponding 

row of the adjacency matrix A (Wasserman & Faust, 1994, pp. 126-127). 

ሻݒை஽ሺܥ  ൌ෍ܣ௜௩
௜

 (2.4) 

In-degree and out-degree centralities reflect prestige among actors, measured by 

being the object of a number of ties, in a sense the amount of times other actors choose a 

particular actor.  Dependent upon the specific relationship being modeled, being selected 

by other nodes may be an indication of power or influence over other actors.  For 

example, if the relationship under consideration is a form of popularity, actors who are 

chosen more often theoretically have more influence over others, which would reflect 

mathematically in a high in-degree centrality.  A hypothetical example reflecting this 

could be requests for co-authorship for academic publications, distinguished individuals 

may be sought out by others attempting to improve their status.  If the relationship is a 

form of power, for example gives orders, actors exhibiting high out-degree centrality are 

considered influential (Wasserman & Faust, 1994, pp. 174-175). 
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2.2.1.4 Betweenness Centrality. 

Betweenness centrality is a measure intended to identify actors who can control 

information flow in a network.  It is based upon actors being located upon the shortest 

paths (geodesic) connecting other actors and this position allows them to exert 

interpersonal influence.  As the actor is on the path between others in the network, they 

exhibit the potential to control occurring communication.  They have the opportunity to 

prevent, delay, withhold, or alter information or materials passing through them.  

Betweenness centrality, CB(v), does implicitly assume flow occurs along the shortest 

paths between actors in the networks.  It is computed by calculating the number of 

shortest paths existing between actors j and k that include distinct actor v, denoted as 

݃௝௞ሺݒሻ, divided by the number of shortest paths existing between actors j and k, denoted 

as ݃௝௞.  The measure is sometimes standardized, ܥ஻
ᇱ ሺݒሻ, by dividing ܥ஻ሺݒሻ by the 

maximum achievable value possible for the center of a star graph (Freeman, 1977, pp. 

35-38; Freeman, 1978/1979, p. 221; Wasserman & Faust, 1994, pp. 189-190). 

ሻݒ஻ሺܥ  ൌ෍݃௝௞ሺݒሻ ݃௝௞⁄
௝ழ௞

 (2.5) 

 
஻ܥ
ᇱ ሺݒሻ ൌ

ሻݒ஻ሺܥ2
ሺ݊ െ 1ሻሺ݊ െ 2ሻ

 (2.6) 

Betweenness centrality identifies individual actors who lie on communication 

paths between other actors.  As such, an actor acting as an intermediary on a 

communication path between two actors “exhibits a potential for control of their 

communication.”  Betweenness centrality reflects actors who coordinate group processes 

as a function of their role in maintaining communication between others.  An actor with 
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high betweenness centrality could “influence the group by withholding or distorting 

information in transmission (Freeman, 1978/1979, p. 221).”  

2.2.1.5 Closeness Centrality. 

Closeness centrality measures an actor’s centrality by examining their shortest 

path distance from all other actors in the network, resulting in a measure more associated 

with the center of a network from a graph theoretic perspective.  Due to the requirement 

of a path existing between nodes, reachability, the measure is only appropriate for 

strongly connected graphs, which in practice precludes directed graphs.  Similarly to 

betweenness centrality, closeness centrality assumes flow occurs along shortest paths.  

For an actor v, the length of the shortest path, d(v,i), between actor v and all other actors i 

is summed and the inverse is computed.  An actor’s closeness centrality, CCሺvሻ, can be 

standardized, ܥ஼
ᇱ ሺݒሻ, so the maximum value is one, by multiplying by the number of 

nodes in the network, n, minus one (Wasserman & Faust, 1994, pp. 184-185; Sabidussi, 

1966, pp. 597, 602).  Closeness centrality has also been extended to incorporate 

disconnected and/or directed graphs, by considering only reachable nodes from a given 

actor.  Adjusted closeness centrality, CCAሺvሻ, for actor v, incorporates the number of 

actors reachable from v, Rv, and for nodes unreachable from v sets d(v,i) to zero 

(Wasserman & Faust, 1994, pp. 200-201).   

 
ሻݒ஼ሺܥ ൌ ൥෍݀ሺݒ, ݅ሻ

௜

൩

ିଵ

 (2.7) 

஼ܥ 
ᇱ ሺݒሻ ൌ ሺ݊ െ 1ሻܥ஼ሺݒሻ (2.8) 
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ሻݒ஼஺ሺܥ ൌ

ܴ௩ ሺ݊ െ 1ሻ⁄
∑ ݀ሺݒ, ݅ሻ௜ ܴ௩⁄

 (2.9) 

Closeness centrality is interpreted as the extent that an actor can avoid the 

potential control of other actors.  Actors with high closeness centrality can seek 

information from throughout the network, and thus are not as dependent upon 

intermediaries for maintaining communication.  Their central position is also an 

indication of their capability to propagate a message through the network with minimum 

cost or time (Freeman, 1978/1979, pp. 224-225). 

2.2.1.6 Eigenvector Centrality. 

Eigenvector centrality is based upon an actor’s status as a function of the status of 

the actors with whom they possess direct or indirect relationships.  Computationally, it is 

a weighted sum of direct and indirect associations across all paths, though it is sensitive 

to differences in degree among the actors (Bonacich, 2007, pp. 555, 564).  An individual 

actor’s status is computed as the results of a weighted linear combination of all actors’ 

status’ scores.  For n actors in a network, this leads to a set of n equations and n 

unknowns, one equation and one unknown status score for each actor, though these 

equations are not guaranteed to possess a non-zero solution.  Various methods have been 

constructed to reflect this social phenomenon and provide slight modifications to enable 

computations for actors’ statuses evaluation, though generally not widely used due to the 

requirement of input parameters without appropriate establishing guidelines (Wasserman 

& Faust, 1994, pp. 205-210; Katz, 1953; Hubbell, 1965; Mizruchi, Mariolis, Schwartz, & 

Mintz, 1986; Bonacich, 1987; Bonacich & Lloyd, 2001).  The predominant measure in 

practice, proposed by Bonacich (1972), establishes the actors’ status scores by the 
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eigenvector, x, associated with the largest eigenvalue, λ, of a symmetric adjacency 

matrix, A, with values restricted between zero and one inclusive.  These conditions ensure 

the largest eigenvalue will be positive and its associated eigenvector will be composed of 

nonnegative elements (Bonacich, 1972, pp. 113, 119).  

 
ݔ ൌ

1
ߣ
 (2.10) ݔܣ

2.2.1.7 Integration. 

Integration is a measure of how well connected an actor is within a network.  It is 

conceptually similar to closeness centrality, though adapted for directed networks.  

Integration is a nodal measure based upon existing shortest paths between all other actors 

and the actor of interest.  Since it is applicable to directed networks, a path may not exist.  

Computing integration, I(v), for actor v, involves the reverse distance.  The reverse 

distance, RD(i,v), involves calculating the length of the shortest path, d(i,v) beginning 

with actor i and terminating at actor v.  If a shortest path between actors i and v does not 

exist, d(i,v) is set to zero.  For directed networks it must be noted that the length of the 

geodesic starting at actor i and terminating at actor j may differ from the geodesic 

beginning at actor j and ending at actor i.  To compute RD(i,v) as shown in Equation 

(2.11), the shortest path length is subtracted from the diameter of the network, d, plus 

one, with diameter defined as the longest existing shortest path in the graph between any 

two nodes.  The reverse distances are summed and divided by the total number of nodes 

in the network, (n), minus one, (n – 1) as displayed in Equation (2.12).  The measure can 

be normalized, Equation (2.13), to produce a relative score by dividing each actor v’s 
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score by the longest shortest path terminating at actor v (Valente & Foreman, 1998, pp. 

90-93). 

,ሺ݅ܦܴ  ሻݒ ൌ ݀ െ ݀ሺ݅, ሻݒ ൅ 1 (2.11) 

 
ሻݒሺܫ ൌ

∑ ,ሺ݅ܦܴ ሻ௜ஷ௩ݒ

݊ െ 1
 (2.12) 

 
ሻݒᇱሺܫ ൌ

ሻݒூሺܥ

max௜,௩ ሾ݀ሺ݅, ሻሿݒ
 (2.13) 

2.2.1.8 Radiality. 

Radiality is the obverse of integration.  While integration is based upon incoming 

arcs to a node, radiality is dependent upon edges emanating from a node.  In contrast to 

integration, radiality measures an actor’s reachability into a network.  Computing 

radiality, R(v), for actor v, again involves the reverse distance, though focuses on the 

paths emanating from node v.  The reverse distance, RD(v,i), involves calculating the 

length of the shortest path, d(v,i) beginning with actor v and terminating at actor i.  

Similar to integration, if a shortest path between actors v and i does not exist, d(v,i) is set 

to zero.  To compute RD(v,i), the shortest path length is subtracted from the diameter of 

the network, d, plus one, and is shown in Equation (2.14).  The reverse distances are 

summed and divided by the total number of nodes in the network, n, minus one, as 

computed by Equation (2.15).  The measure can be normalized, Equation (2.16), to 

produce a relative score by dividing each actor v’s score by the longest shortest path 

beginning at actor v (Valente & Foreman, 1998, pp. 90-93). 

,ݒሺܦܴ  ݅ሻ ൌ ݀ െ ݀ሺݒ, ݅ሻ ൅ 1 (2.14) 

 
ܴሺݒሻ ൌ

∑ ,ݒሺܦܴ ݅ሻ௜ஷ௩

݊ െ 1
 (2.15) 
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ܴᇱሺݒሻ ൌ

ሻݒூሺܥ

max௩,௜ ሾ݀ሺݒ, ݅ሻሿ
 (2.16) 

Care must be taken when interpreting integration or radiality.  Dependent upon 

the relationship being modeled the meanings to these two measures may reverse.  For 

example, if the directed relationship in a social network is giving orders, possessing a 

high radiality score indicates power, perhaps representing a general in a military 

hierarchy, while a high integration score is not indicative of status.  If the hypothetical 

directed relationship is gives information, a high integration score would indicate an 

individual with abilities to collect information from throughout the network, possibly 

increasing status if knowledge is power applies.  In contrast, a high radiality score reflects 

an individual’s capacity to rapidly disseminate information across the social network. 

2.2.1.9 Clustering Coefficient. 

The clustering coefficient for a given actor measures the number of connections 

among its neighbors, and is related to the transitivity concept in the social network 

literature.  Transitivity is based upon the observance that “a friend of a friend is a friend 

(Wasserman & Faust, 1994, p. 150).”  The clustering coefficient is a measurement of this 

social phenomenon of a person’s friends also being friends of each other.  It is a local 

measure as for a given actor it only needs its immediate neighbors and their 

interrelationships for calculation.  It is defined as the proportion of interrelationships 

among neighbors compared against the potential links that could exist, which differ for 

undirected versus directed graphs.  Given an undirected graph and a node v with k 

neighbors with m edges connecting neighbors of v, the clustering coefficient C(v) of node 
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v is defined as in Equation (2.17).  For directed graphs, the equation is multiplied by one-

half, Equation (2.18) (Watts & Strogatz, 1998, p. 441).   

 
ሻݒundirectedሺܥ ൌ

2݉
݇ሺ݇ െ 1ሻ

 (2.17) 

ሻݒdirectedሺܥ  ൌ
݉

݇ሺ݇ െ 1ሻ
 (2.18) 

2.2.2 SNA Network Measures. 

One objective of SNA is to characterize a network, in terms of efficiency and 

effectiveness, or conduct a comparison to other networks.  A host of measures derived 

from calculations based upon the network structure are available to characterize a 

network.  Presented here is a subset of available SNA network measures, selected due to 

their usage within SNA, specifically in literature addressing imperfect social network 

data.  Difficulties arise in the interpretation of these measures due to a lack of knowledge 

of what is an appropriate or optimal value in the context of the specific social network 

under investigation.  Comparisons among various social networks with network measures 

are also suspect due to the impact of network size upon several of the calculations. 

2.2.2.1 Density. 

The density of a graph is the number of edges in the network, m, divided by the 

maximum possible number of edges (Wasserman & Faust, 1994, p. 101).  If the graph is 

a directed network, the maximum number of possible edges is doubled (Wasserman & 

Faust, 1994, p. 129). 

 
undirectedܦ ൌ

݉
݊ሺ݊ െ 1ሻ 2⁄

ൌ
2݉

݊ሺ݊ െ 1ሻ
 (2.19) 
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directedܦ  ൌ
݉

݊ሺ݊ െ 1ሻ
 (2.20) 

2.2.2.2 Average Degree and Degree Distribution. 

A commonly presented network measure is the average degree of a graph, simply 

defined the average of all the individual nodes’ degrees (Watts, 1999, pp. 26-27).  More 

descriptive than a simple mean, the degree distribution characterizes the variation among 

individual nodes’ degrees.  Significant to social networks, a power law degree 

distribution, or a closely related distribution such as a power law with cutoff, appears to 

be prevalent in empirical studies of social networks (Barabási & Bonabeau, 2003, pp. 63-

64).  A degree distribution follows a power law distribution if the probability of a given 

nodal degree, p(x), is drawn from Equation (2.21), which is characterized by its exponent 

or scaling parameter α: 

ሻݔሺ݌  ן  ఈ (2.21)ିݔ

Due to the tail behavior of a power law, empirically accurately estimating the 

distribution’s parameters, the scaling parameter and the normalization constant, is 

difficult.  Clauset et al (2009) introduced a statistical procedure to compute the 

parameters, calculate the goodness-of-fit, and compare against other potential 

distributions, though only their method to compute the parameters is discussed here.  

Their power law degree distribution, p(x), is a function of the scaling parameter, α, and 

the minimum degree for which the power law is appropriate, xmin.  Effectively, nodes 

with degrees below xmin are ignored in the computations estimating α.  xmin is determined 

by iteratively investigating every potential xmin, estimating α, and comparing the 

corresponding model’s degree distribution against the node degrees found in the 
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complete network of n nodes via the Kolmogorov-Smirnov statistic, a common statistical 

method of comparing distributions.  The α and xmin are selected from the respective 

model that fits the data set best.  Equations (2.22) and (2.23) summarize the 

approximations for the power law parameters (Clauset, Shalizi, & Newman, 2009). 

 
ሻݔሺ݌ ൌ

ሺߙ െ 1ሻݔ୫୧୬
ఈିଵ

∑ ሺ݅ ൅ ୫୧୬ሻିఈஶݔ
௜ୀ଴

 (2.22) 

 
ොߙ ؆ 1 ൅ ݊ ൥෍ln

௜ݔ
௠௜௡ݔ െ .5

௡

௜ୀଵ

൩

ିଵ

 (2.23) 

2.2.2.3 Degree Correlation (Assortativity). 

Degree correlation, also referred to as assortativity, is the Pearson correlation 

coefficient of nodal degrees (Newman, 2002).  A network displaying assortative mixing, 

or positive correlation among nodal degrees, will have high-degree nodes connected 

directly to other high-degree nodes.  The converse, a network with disassortative mixing, 

or negative correlation among nodal degrees, will possess high-degree nodes directly 

connected to low-degree nodes.  Many social networks appear to possess assortative 

mixing, positive degree correlation (Newman & Park, 2003, pp. 036122-2), with high-

degree nodes interconnected within a network core.  Assortativity, r, is calculated via the 

following equation, where M is the total number of edges in the network, and ji, ki are the 

respective degrees of the vertices at the endpoints of the ith arc (Newman, 2002): 

 

ݎ ൌ
ଵିܯ ∑ ݆௜݇௜௜ െ ቂିܯଵ ∑ 1

2 ሺ݆௜ ൅ ݇௜ሻ௜ ቃ
ଶ

ଵିܯ ∑ 1
2 ሺ݆௜

ଶ ൅ ݇௜
ଶሻ௜ െ ቂିܯଵ ∑ 1

2 ሺ݆௜ ൅ ݇௜ሻ௜ ቃ
ଶ (2.24) 



www.manaraa.com

 

II-19 

 

2.2.2.4 Average Clustering Coefficient. 

The average clustering coefficient, C,  “measures the cliquishness” of a network, 

simply calculated by computing the average over all nodes’ clustering coefficients given 

n nodes in the graph and ranges (Watts & Strogatz, 1998, p. 441).  An average clustering 

coefficient for a network equal to zero implies that for all nodes in the graph, no 

neighbors of any node v is adjacent to any other neighbor of node v (Watts, 1999, p. 33). 

 
ܥ ൌ

∑ ሻ௩ݒሺܥ

݊
 (2.25) 

Alternative clustering network measures exist, though they all maintain the same 

range of [0,1].  One alternative averages the clustering coefficient of only nodes with 

degree greater than one (Soffer & Vázquez, 2005).  

 
ௗܥ ൌ

∑ ሻ௩|ௗሺ௩ሻவଵݒሺܥ

∑ 1௩|ௗሺ௩ሻவଵ
 (2.26) 

Newman, Strogatz and Watts (2001) introduced an alternative definition of a 

network measure of clustering involving the number of triangles present on the graph 

compared against the number of connected triples of nodes.  “‘Triangles’ are trios of 

vertices each of which is connected to both of the others, and ‘connected triples’ are trios 

in which at least one is connected to both the others (Newman, Strogatz, & Watts, 2001, 

pp. 026118-12).”  The numerator is multiplied by three to account for triangles are 

composed of three connected triples of nodes. 

 
௧ܥ ൌ

3ሺnumber of triangles on the graphሻ
number of connected triples of nodes

 (2.27) 

This definition of the clustering coefficient enables the comparison of a social 

network against a random model.    Utilizing the average degree, ҧ݀, the average of the 
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squared nodal degrees, ݀ଶതതത, and the size of the network, n, the clustering coefficient value 

for a network with no structure assumptions, ܥ௡, can be computed.  Real world social 

network data sets display higher clustering coefficients than their corresponding null 

structure configuration random model would suggest (Newman & Park, 2003, pp. 

036122-3 : 036122-4).  

 
௡ܥ ൌ

൫݀ଶതതത െ ҧ݀ଶ൯

݊ ҧ݀ଷ  (2.28) 

An additional network measure based upon clustering coefficient involves a ratio 

of the number of neighbor interrelationships for each node compared against the sum of 

the possible edges for each set of neighbors in the graph.  This can be interpreted as the 

three times the number of triangles present in the graph divided by the number of pairs of 

adjacent edges.  Given an undirected graph, for each node v with d(v) neighbors with mv 

edges connecting neighbors of v, the ratio clustering coefficient is defined as follows (for 

directed graphs the equation is multiplied by ½) (Bollobás & Riordan, 2003, p. 18; Soffer 

& Vázquez, 2005): 

 
௥ܥ ൌ

∑ ݉௩௩

∑ ൫ௗሺ௩ሻଶ ൯௩
 (2.29) 

2.2.2.5 Fractional Size of Largest Component. 

When modeled, social networks can form disconnected graphs, and often do in 

the case of dark networks.  This phenomenon causes numerous difficulties in applying 

various SNA measures due to their assumptions of connected graphs.  In practice, SNA 

measures are applied against each component, i.e. connected sub-graph, individually, or 

in some cases calculated for the largest component only.  One network measure that 
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investigates this phenomenon is the fractional size of the largest component, simply 

defined as the number of nodes in the largest component divided by the total number of 

vertices in the graph. 

2.2.2.6 Mean Path Length and Characteristic Path Length. 

The mean path length is the average length of the shortest paths between all nodes 

contained within the largest component (Kossinets, 2006, p. 254).  Existing within the 

literature is also the characteristic path length defined as the median of the means of the 

shortest path lengths between all nodes.  Originally defined for undirected single 

component graphs, computing the characteristic path length involves calculating the 

average of the shortest paths for a given node to all other vertices.  The characteristic path 

length is the median of this set of averages, i.e. one average per node (Watts, 1999, p. 

29). 

2.2.3 Bipartite Affiliation Networks in SNA. 

Affiliation networks are two-mode networks describing the relationships existing 

between actors and events.  Actors are connected only to the second mode, the events, 

and events are only connected to actors.  This results in a bipartite graph with the subsets 

of actors and events with all arcs spanning between the two subsets and not within a 

subset.  This bipartite graph can be projected into a one mode actor network by assuming 

actors connected to the same event possess, or are more likely to possess, a direct tie 

between them and other actors linked to the same event.  Similarly, the bipartite graph 

can be projected into a one mode event network with the events interconnected through 

actor linkages (Wasserman & Faust, 1994, pp. 291-312).  The projection of an affiliation 
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network, represented as a two mode bipartite network, into a single mode network 

appears in the literature as unipartite projection (Kossinets, 2006, pp. 250-251). 

 

 
Figure II-2 Bipartite Affiliation Network and Associated Unipartite Projection 

(Adapted from Kossinets, 2006, p. 253) 
 

 

2.2.4 SNA Bipartite Affiliation Network Measures. 

2.2.4.1 Redundancy. 

Kossinets (2006) introduced a measure to gauge the average importance of an 

affiliation within a bipartite graph, referred to as redundancy, β.  Redundancy is 

calculated via the following equation where μ is defined as the average number of 

affiliations per actor, v is the average size of an affiliation, and z is the mean actor degree 

in the unipartite projection of the actors (Kossinets, 2006, p. 257). 

ߚ  ൌ
ݒߤ െ ݖ
ݒߤ

ൌ 1 െ
ݖ
ݒߤ

 (2.30) 
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2.2.5 SNA Measures Overview. 

Social network analysts utilize SNA measures discussed in Section 2.2, along 

with others, to detect changes in the social network’s behaviors, changes in individual 

actors’ behaviors, and to make decisions on how to affect dark network organizations.  

The SNA nodal measures can be used to determine which individuals or sets of actors to 

target for cooption, prosecution, message insemination, monitoring to gain more 

information on the organization and potential removal from the network.  Some of these 

decisions constitute single opportunity events for execution or involve extensive resource 

commitments.  As a result, fully understanding the impact of conducting these decisions 

using SNA measures that are conducting calculations on underlying imperfect social 

network data is paramount to adequately and appropriately assess risks and opportunities 

to the decision-maker. 

2.3 Causes of Imperfect Social Network Data 

Imperfect social network data stems from various sources.  One source, boundary 

specification, is ever present as a social network is a model, an abstraction.  As such, the 

modeler makes decisions regarding the inclusion and exclusion of specific data elements.  

In the particular case of social network analysis, a boundary specification problem arises.  

The modeler must decide which actors and which relations are to be included in the data 

set, in effect, determining the network’s context.  The challenge is further compounded 

when selecting the associated variables to collect on each actor and each relation.  

Difficulty in acquiring specific nodal or edge information, such as actors’ demographic 
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data or the ability to measure relationships’ intensities may drive boundary specification 

decisions. 

Additional challenges and sources of imperfect data arise in the data collection 

portion of the analysis.  An improper data collection design, inherent inaccuracies 

generated by the specific data providers, or a lack of information—which may be the 

intention of the subject network as in the case of dark networks—may introduce 

extraneous, spurious, or inaccurate data.  These factors also potentially prevent the 

comprehensive collection of essential elements which can significantly impact the 

subsequent analysis and results.  Inaccuracies in the collected data coupled with missing 

observations potentially lead to social network analysis being conducted in an 

environment of imperfect data. 

2.3.1 Boundary Specification Problem. 

The boundary specification problem involves the inclusion and exclusion of 

actors and the inclusion and exclusion of relations.  The actors and corresponding 

relations that are included in the analysis—that define the network—are a subset of all 

existing actors and relations—from many potential networks.  Rules are established to 

define an actor’s inclusion into the network of study.  Actors may be included or 

excluded from the social network based upon actor characteristics, their affiliations, or 

other specifications.  Additionally, specific relation types are identified for inclusion in 

the network from the set of all relations.  The appropriateness of the resultant reduction in 

actors or relations is dependent upon the analysis being conducted (Wasserman & Faust, 

1994, pp. 30-39).  Dark network actors often intermesh their professional and personal 
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lives, infusing difficulty in clearly delineating where illicit organizations and operations 

end and legitimate transactions and activities begin, in effect creating a fuzzy boundary 

which the social network analyst must arbitrate (Sparrow, 1991, p. 262). 

Two different approaches are presented in Laumann, Marsden, and Prensky 

(1983) to address the boundary specification problem: realist and nominalist, though in 

application, a combination of the approaches may be employed for a particular study.  

Each boundary specification approach couples inclusion and exclusion rules that can be 

applied to collect data for modeling the target subject of interest (Laumann, Marsden, & 

Prensky, 1983, pp. 20-21). 

The realist approach defines the boundary by assuming “that a social entity exists 

as a collectively shared subjective awareness of all, or at least most, of the actors who are 

members (Laumann, Marsden, & Prensky, 1983, p. 21).”  This approach is somewhat 

circular argumentation in effect as the social network is defined by those who compose 

the social network.  For formal organizations with clear membership this assumption is 

benign; however, when dealing with informal groups, such as collections of friends or 

criminal networks, this assumption creates a fluidity of the boundary of the social 

network.  It has the potential to create a paradox where an individual actor may not 

consider themselves part of the social network, while members of the social network 

consider the actor as part of the collective.  The obverse of the paradox could just as 

easily occur.  From a modeling perspective, this inconsistency of the appropriateness of 

including the individual actor in the social network makes delineating the boundary 

difficult. 
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In the nominalist approach, the “analyst self-consciously imposes a conceptual 

framework constructed to serve his own analytic purposes (Laumann, Marsden, & 

Prensky, 1983, p. 21).”   The social network is defined by arbitrary criteria that serve the 

analyst’s lines of inquiry.  In opposition to the realist approach, the social network’s self-

defined boundary is no longer an assumption, but an empirical question of how it 

compares against the analyst’s defined boundary (Laumann, Marsden, & Prensky, 1983, 

p. 22).  The arbitrary boundary selection by the analyst if applied inappropriately could 

significantly alter the social network analysis results.  Conversely, if properly 

accomplished, this could distill the data requirements to essential elements required to 

satisfactorily analyze the question at hand, while concurrently eliminating extraneous 

data that could distort the results. 

The data collected for a SNA study is generally either actors, relations, events, 

affiliations or a combination of the four.  The inclusion and exclusion rules determine 

which elements of the four data types are incorporated into the social network model. 

Various inclusion and exclusion rules can be applied exclusively or in combination to 

determine which social data elements, specifically which actors, relations, events or 

affiliations, are incorporated into the social network model and subsequent analysis 

(Laumann, Marsden, & Prensky, 1983, p. 22). 

2.3.1.1 Boundary Specification of Actors. 

A network is partially defined by the actors to be represented as nodes.  Laumann 

et al (1983) identify two types of actor boundary specification inclusion and exclusion 

rules, with the potential of generating rules combining the types.  Positional rules test 
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actors’ attributes for inclusion into the social network.  The actor attribute could be 

fulfilling a specific position or role within an organization, hence the category name.  The 

other type, a reputational rule, “utilizes the judgments of knowledgeable informants in 

delimiting participant actors (Laumann, Marsden, & Prensky, 1983, p. 23).”  Hybrid 

inclusion and exclusion rules generated from elements of both types are sometimes found 

in practice (Laumann, Marsden, & Prensky, 1983, p. 23).   

Applying these rule categories to real world problems generates a wide range of 

options to discriminate actors for potential incorporation into the social network model 

under investigation.  Stemming from the three rule categories defined by Laumann et al 

(1983), an actor’s inclusion and exclusion may be based upon membership with 

particular organizations, positional specification, demographic data or other actor 

attributes, involvement with specific relation types, event attendance, identification of 

inclusion by other actors, or a combination of these factors (Kossinets, 2008, p. 5).  

Though not a comprehensive categorization of actor inclusion and exclusion rules, a brief 

discussion of several rules follows. 

The network of interest could be a formal organization in which actors are 

identified as members.  If the organization’s internal transactions are of interest, limiting 

the network to include only those who are members of the organization may be 

appropriate and enhance the accuracy, in terms of representation and interpretation, of 

computed social network analysis measures.  Examples may include business 

corporations in which there may be a number of relations with suppliers and customers, 

but to accurately describe internal processes the social network may need to be limited to 

only employees of the organization (Marsden, 1990, p. 439). 
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Dependent upon the network of interest, positional specification may be used to 

define the actors within the network.  Positional specification limits the actors in the 

network to those who occupy positions of rank in a formally constituted group.  A 

military social network example may only include actors who are in command of a unit 

(Kossinets, 2008, p. 5). 

Attributes of an actor could determine their appropriateness for inclusion into the 

network model.  These attributes can include demographic data on the individual, such as 

gender, age, or rank.  Utilizing actor attributes enables a reduction in extraneous nodes 

which may alter the analytic results by limiting the network to actors of significant value.  

A notional example may include investigating familial relationships and their impact on 

an organization.  It may be prudent to remove children under a set age to minimize the 

impact of the relations on the social network analysis measures.  A possible real world 

network where this is applicable may be beneficial is familial based organized crime, 

such as the mafia, or certain terrorist or insurgent organizations based primarily on 

familial connections. 

Dependent upon the analytic goals of the social network study, the actors may be 

limited to those who only possess specific types of relations (Marsden, 1990, p. 439).  If 

particular relation types are of specific interest, perhaps due to their impact upon the 

network, only actors who possess those types of relations may be included within the 

network.  An epidemiological example could involve the tracking of a disease.  Only 

actors with sexual relations may be pertinent in determining the social network in the 

case of a sexually transmitted disease. 



www.manaraa.com

 

II-29 

 

In some real world networks there is not a clear delineation of actors belonging to 

specific organizations or groups.  In these cases, it is possible that actor inclusion in the 

network is defined by those actors within the network.  As this is based upon the 

individual perspectives of actors within the network, it is subject to biases.  Kossinets 

(2008, p. 5) notes that, “Actors may disagree in their perception of social structure; they 

may be attributing different weights to certain other actors, relationship or types of 

relationships.”  Others’ perceptions of an actor’s activities determine whether the actor is 

considered as part of the network.  A paradox can exist in which an actor believes he is 

part of a network, while the other actors do not include him as part of the network.  

Examples include collective movements on issues without political party affiliation or 

several party affiliations represented.  Each individual within the network may construe a 

differing threshold of activity for inclusion with the network.  Some may view voting in a 

specific manner, or donating funds and resources as justification for inclusion, while 

others may set the threshold higher as in actively protesting, and so forth.  A real world 

example of this phenomenon is the environmental movement.  There is no definition for 

someone being green, which could be interpreted as someone recycling to being a 

member of Greenpeace.  Each potential member of the network can define the network 

inclusion criteria differently. 

2.3.1.2 Boundary Specification of Relations. 

Relational rules only allow actors possessing specific, defined relationship types 

into the social network model (Laumann, Marsden, & Prensky, 1983, p. 23).  Relations 

for a given social network are chosen to encompass and represent specific types of actor 
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interaction.  The exclusion of extraneous relationship types focuses the social network to 

represent a phenomenon of interest of the actors’ interactions.  The inclusion of 

relationships types that have no bearing on the analytical question at hand may negatively 

affect the accuracy of the resultant SNA measures.  Likewise, ignoring relationships 

among actors of certain types that significantly describe and impact actors’ behavior may 

negatively affect the accuracy of the SNA measures as well.  Incorrectly bounding the 

relationships that are included in a social network generates extraneous links or, in effect, 

removes links that are present in the “true network” under investigation. 

2.3.1.3 Boundary Specification of Events and Affiliations. 

Actors and their associated relationships derived from participation in specific 

events or defined affiliations can provide a basis for inclusion and exclusion rules.  An 

event or activity is specified by the analyst as being relevant to the social network.  Only 

actors and the inter-relationships derived from participating in the event or activity are 

included in the social network model (Laumann, Marsden, & Prensky, 1983, p. 24). 

A similar boundary specification can be extended to affiliations.  In some 

instances, affiliation data between actors is generated by event attendance, but can also be 

derived through membership to multiple organizations and groups.  All actors who attend 

a particular set of events are included as part of the network (Marsden, 1990, p. 439).  

Kossinets (2008, p. 5) warns that event attendance “is particular error-prone and is best 

described as convenience sampling.”  His reasoning is based upon the self selection of 

event attendance by the actors.  Self selection could result from actors who attend a 

meeting, though numerous circumstances could affect those who did not attend and thus 
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preclude them as members of the network.  Examples such as subordinates directed to 

meetings in place of their superiors, virtual participation via telecommuting, meeting 

conflicts inadvertently altering the membership, can substantially impact which actors are 

included in the social network model. 

2.3.2 Data Collection Effects on Imperfect Data. 

The technique used to acquire social network data may introduce sources of error 

and biases.  The type of social network of interest may contribute or even compound 

these errors or biases.  For example, data collection on bright networks is commonly 

accomplished through surveys and data freely provided by actors within the network.  In 

contrast, with dark networks, the actors within the network may purposely inhibit data 

collection or encourage the collection of spurious data through a variety of methods and 

means. 

2.3.2.1 Disambiguation of Actor Aliases. 

One issue inhibiting the collection of accurate social network data on dark 

networks is disambiguation of actor aliases.  Some actors within a dark network operate 

by using a series of aliases, which could take the form of alternate names, noms de 

guerre, redundant email accounts, multiple IP addresses, or several cell phones.  Actors 

use their various identities when interacting with other actors to conceal the scope of their 

activities and provide a level of protection if a portion of the network is compromised.  

This effect can also be present in social network data not by actors’ design or intentions, 

but as a failure to disambiguate actor information properly.  Causes include trivial 
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mistakes such as typological errors, misspellings, poor transliteration, failure to reconcile 

nicknames, and so forth. 

This phenomenon presents a challenge in the collection of social network data.  

Aliases generate false actors in the network analysis while masking the full spectrum of 

relationships of a single individual.  With most SNA nodal measures, the removal of 

relationships to an actor diminishes the actor’s computed importance.  An actor spreading 

their relationships over several aliases can significantly diminish their appeared 

importance within the network.  The challenge in SNA data collection when confronted 

with this issue is successful disambiguation and correct aggregation of aliased actors and 

their collective relationships into a proper single actor. 

2.3.2.2 Respondent Inaccuracies. 

As social network data can be reported by actors within or outside of the network, 

there is an inherent human error mechanism in accurately reporting network information.  

Research has shown that “people are incapable of reporting accurately on transactions 

that take place within highly specific time frames (Marsden, 1990, p. 447).”  Respondents 

are biased towards reporting the routine, typical network structure.  This is exemplified 

by event attendance, where actors have a tendency to attribute an actor’s attendance to a 

specific event occurrence based upon the actor’s attendance in general (Marsden, 1990, p. 

447). 

Several studies (Killworth & Bernard, 1976, 1979; Bernard & Killworth, 1977; 

Bernard, Killworth, & Sailer, 1979/1980, 1982; Romney & Faust, 1982; Bernard, 

Killworth, Kronenfeld, & Sailer, 1984; Romney & Weller, 1984) have investigated the 
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accuracy of informants providing information on social networks.  Generally, the studies 

involve voluntary participants reporting their own social contacts within given time 

periods.  The results from these investigations paint a foreboding picture in terms of the 

amount of potential error stemming from respondent inaccuracies for any given social 

network study. 

The initial investigation into this phenomenon tersely summarized informants as 

“extremely inaccurate (Killworth & Bernard, 1976, p. 269)” and “people simply do not 

know, with any degree of accuracy, with whom they communicate (p. 283).”  In this 

particular study, respondents were reporting those with whom they communicated and 

the relative rankings of their direct communication partners.  This is the most simplistic 

case in terms of social network data collection, as an individual is only reporting their 

own direct communication.  However, the results showed that individuals display 

relatively poor performance in accurately reporting their own communication patterns.  

Individuals did not even characterize more than one-third of their most frequent contacts 

(Killworth & Bernard, 1976, p. 280).  In their initial study, Killworth and Bernard (1976, 

p. 281) stated “people only seem capable of ranking their most frequent communicator 

with any accuracy—and then only half the time!”  Responding to critiques about their 

methodology, additional studies were conducted utilizing more expansive data sets and 

improved data collection means designed to improve the rigor.  These refined studies 

(Bernard & Killworth, 1977) further solidified their initial assertions; “at best, people can 

recall or predict (on average) less than half their communication (either amount or 

frequency (p. 10).”  Individuals’ inability to accurately report their own communication 



www.manaraa.com

 

II-34 

 

patterns casts aspersion upon an informant’s ability to correctly disclose the inner 

workings of a real world social network, particularly dark networks. 

The only bright spots in terms of informant accuracy identified in Bernard’s, 

Killworth’s, and Sailer’s extensive work are the general trend of “errors of omission are 

more severe than those of commission (Bernard, Killworth, & Sailer, 1982, p. 53)” and 

“although individual people did know with whom they communicated, people en masse 

seemed to know certain broad facts about the communication pattern (Bernard, 

Killworth, & Sailer, 1982, p. 62).”  The first quote indicates that social network data sets, 

in this case they were examining cooperative bright or open society networks, suffer 

more from missing data as opposed to spurious data.  The second observation provides 

optimism that although actors may not identify their local structure accurately, they may 

possess insights into the global structure of the social network.  As several social network 

measures are intended to quantify social interactions based upon prestige, influence, 

social status, and communication activity, informants’ characterizations of relationships 

existing within the entire social network may prove to be accurate reflections of the 

network’s structure.  Informant reporting of the entire social network structure may 

generate data of sufficient quality and quantity that individuals and subgroups identified 

from SNA measures are of utility and appropriately characterize the real world social 

network. 

Killworth’s and Bernard’s (1976) initial study utilized teletype communication 

logs among a deaf community in the Washington, D.C. area.  Members of the network 

were asked to rank order those with whom they communicated.  The subjects’ responses 

were compared against the teletype logs to assess informant accuracy.  Their subsequent 



www.manaraa.com

 

II-35 

 

studies (Bernard & Killworth, 1977; Killworth & Bernard, 1979/1980;) drew their 

conclusions from four data sets: another replication of the deaf community experiment, 

amateur radio operator communications, observed interactions among office personnel, 

and observed verbal communications among faculty, graduate students, and staff in a 

graduate program at a university.  The deaf community experiment replication again had 

teletype logs to compare network members’ recall of communications against.  The 

amateur radio operators’ communications were monitored to generate the accurate 

network against which the informants’ recall could be measured.   Bernard, Killworth, 

and Sailer (1979/1980) replaced the deaf community data set with observed interactions 

of a college fraternity.  Their methodology consistently involved comparing the social 

network data provided by participant sources, i.e. informant reported, against the 

empirically collected network representation, obtained through technical collection, such 

as the teletype logs or the monitoring of radio communications, or by observed 

interactions. 

Unfortunately, somewhat contradictory findings to those of Bernard, Killworth 

and Sailer are also present in the literature.  Romney and Faust (1982, p. 300) stated their 

ability to “capture the structure of a communications network from recalled data.”  Using 

one of Bernard’s, Killworth’s and Sailer’s data sets, Romney and Faust demonstrated that 

structure could be extracted, though they truncated and normalized the original data.  The 

structure they detected was one of interactions, and displayed that “the more similar two 

people judge the communication patterns of others, the more they interact with each other 

(Romney & Faust, 1982, pp. 297-300).” 
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adams and Moody (2007) investigated respondent concordance on sexual, drug, 

and social relationships.  Individuals were interviewed up to five times over various time 

periods and questioned on relationships they were involved with and those of other actors 

in the network.  Their results indicated that “respondents appear reliable for both who 

they are connected to and when they were connected (adams & Moody, 2007, p. 55).”  

However, respondents “are not as reliable reporting non-contact ties [relationships in 

which they are not a participant] as they are for their own ties (adams & Moody, 2007, p. 

55).”  Furthermore, there is a bias as “respondents are assuming that since they know two 

people, those two people must in turn know each other (adams & Moody, 2007, p. 56).” 

2.3.2.3 Fixed Choice Effect. 

Surveys are a common approach to collecting social network data on bright 

networks.  One limitation that occasionally appears in surveys is termed the fixed choice 

effect, also referred to in the literature as right-censoring by vertex degree (Kossinets, 

2006, pp. 252-253).  Survey respondents are only permitted to nominate up to a certain 

number of actors with whom they possess relationships.  The fixed choice effect 

generates imperfect data errors dependent upon the number of permitted choices in 

comparison with the underlying true structure.  If the true structure of the social network 

for an individual possesses fewer connections than the number of choices, participants 

may feel compelled to nominate other choices, disregarding whether they accurately 

reflect reality.  If the true structure contains more connections than permitted by the 

number of choices, the resulting data collection produces a truncated social network 

model (Holland & Leinhardt, 1973, pp. 88, 90).   
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2.3.2.4 Non-Responsiveness and Non-Detection. 

The actors and relations define the social network, and collecting all of the data 

may not be feasible, so the resultant network for analysis may only be a sample of the 

true underlying network.  This missing data can be absent due to a variety of mechanisms 

and thus may range from random to a stochastic process possibly correlated with some of 

the network’s parameters.  In bright networks, actors may choose not to respond to the 

collection method, such as a survey.  For dark networks, specific actors or relationships 

may not be susceptible to the data collection means due to dealing with non-cooperative 

entities.  Dark networks might exhibit a correlated missing data stochastic process as the 

actors within the social network conduct activities to purposely promote non-detection of 

actors within the network and the relationships that exist among them.  Non-detection, in 

effect, produces a similar effect as non-responsiveness.  Correlation of missing data to 

network parameters could potentially stem from important nodes within a dark network 

intentionally attempting to appear as non-important, such as hiding relationships with 

other important actors.  The impact and effectiveness of these activities may vary 

significantly dependent upon the SNA measure in use, the structure of the network, and 

other factors. 

Dark network activities that frustrate efforts to obtain social network data are 

analogous to the Department of Defense’s concept of operations security (OPSEC) that 

promotes the protection of unclassified information that may be advantageous to an 

adversary.  OPSEC is defined as: 

a process which includes identifying actions that can be observed by 
adversary intelligence systems; determine indicators that adversary 
intelligence systems might obtain that could be interpreted or pieced 
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together to derive critical information in time to be useful to adversaries; 
and select and execute measures that eliminate or reduce to an acceptable 
level the vulnerabilities of friendly actions to adversary exploitation 
(Department of Defense, 2006, pp. GL-4). 

Non-responsiveness of members of a social network has been investigated in the 

literature.  Generally, these studies focused on response rates to social network data 

collection surveys in which participants voluntarily identify the relationships they 

possess.  Identifying, evaluating, and developing survey strategies which increase the 

response rate are the main thrust of the academic research in this area.  Its direct 

applicability to investigating dark networks is questionable as members of a dark network 

sometimes take active measures to preclude their identification and position in the social 

structure.  However, several insights derived from the impact of non-responsiveness upon 

Social Network Analysis may prove beneficial to the investigation of dark networks. 

Stork and Richards (1992) categorized social network information obtained in the 

presence of non-responsive participants.  For a given complete network of n actors and a 

response percentage rate of R, three categories of information emerge: complete 

information, partial information, and no information.  Complete information is the 

category of which both members of the reported relationship were collected, i.e. both 

responded to the survey, and reflects the upper left quadrant in Figure II-3.  For an 

undirected relationship, both members confirmed either the existence of the relationship 

or the null relationship.  For directed relationships, if collected properly, the existence of 

the potential relationships directed from actor A to actor B, actor B to actor A, 

reciprocation, or null relationships is in effect confirmed by both parties.  For example, if 

the relationship is advises, simply querying an actor who they advise delivers one set of 
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the relationships.  However, by additionally querying from whom the actor receives 

advice delivers the remainder of the relationships.  Proceeding in this manner enables 

confirmatory nominations from both parties on the existence or absence of directed 

relationships. 

In some instances, the potential exists for a responsive participant in the social 

network to provide information on their relationships involving a non-responsive 

participant.  This single nomination case does provide partial information on the 

sociomatrix, as depicted in the upper right and lower left quadrants in Figure II-3.  Single 

nomination identifies potential candidate actors for inclusion into the social network 

model, though the appropriateness of incorporating them must be assessed as the 

candidate in question did not confirm the relationships drawing them into the network.  

For directed relationships, the participating respondents must be queried on both 

directions of potential relationships to fully encompass all potential non-respondent 

network members.  Inquiring upon a responsive participant’s outgoing directed 

relationships, as well as the incoming directed relationships, identifies the maximum 

obtainable number of non-respondents in the social network. 

When examining dark networks, there will probably exist network members 

whose social relationships will not be captured by the data collection technique.  

Additionally, these non-respondents may interact among themselves; however, these 

relationships will be opaque to the social network analyst.  This phenomenon is 

represented in the lower right quadrant in Figure II-3, where no social network 

information exists. 
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Figure II-3 Notional Sociomatrix with Responsiveness Rate 
 

 

Sorting actors by their response status in a sociomatrix highlights the categories of 

information as displayed in Figure II-3.  Modeling options as identified by Little and 

Rubin (1989) are composed of: complete-case analysis, available-case analysis, and 

imputation and are overlaid in Figure II-4.  Complete-case analysis only utilizes 

relationships obtained from confirmed nominations with both actors reporting the 

existence or absence of the relationship, with the basis of this decision grounded by the 

assumption “reciprocated reports are substantially more likely to match observed 

interactions than are unreciprocated reports (Marsden, 1990, p. 447).”  Available-case 

analysis extends the data set to include relationships that are identified by only one 

member of the dyad, also referenced as reconstruction (Stork & Richards, 1992, p. 197).  
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The data for available-case analysis can be extended via imputation.  “Imputation 

replaces missing values by suitable estimates and then applies standard complete-data 

methods to the filled-in data (Little & Rubin, 1989/1990, p. 294).”  However when 

applied, imputation may introduce imperfect social network data into the model that 

could significantly affect the SNA results. 
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Figure II-4 Information Cases with Responsiveness Rate 
 

 

Figure II-5 displays the number of directed relationships for each quadrant of the 

sociomatrix for notional values of the response rate R, and the number of nodes in the 

complete network, n.  Of note, the objective of a data collection activity could be either to 
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maximize the amount of “complete information” to support complete-analysis or to 

minimize the amount of “no information” to support available-case analysis and 

imputation.  Either strategy has substantial implications upon the resulting social network 

analysis. 
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2.3.2.5 Snowballing Data Collection Technique. 

Due to the difficulty of constructing social networks, while somewhat alleviated 

due to electronic social phenomenon (such as online social networking sites, texting, and 

so forth), several data collection techniques exist.  One prominent technique in the 

literature is snowball sampling.  The process involves beginning with a seed actor or 
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actors, collecting a specified number of their contacts and adding those actors to the 

network.  A specified number of the contacts of the recently added actors are collected 

and those actors are added to the network.  Additional contacts are added to the social 

network model in an iterative fashion for the desired number of repetitions.   Thus, there 

are two parameters of the algorithm: the number of contacts identified by an individual 

actor and the number of iterations of the algorithm (Goodman, 1961). 

There are numerous variations to snowball sampling: increasing the number of 

initial seed actors to begin the process, only investigating a subset of an actor’s contacts 

to increase the network either from a random process or driven by local evaluations of 

SNA nodal measures (Tsvetovat & Carley, 2007; Illenberger, Flotterod, & Nagel, 2008; 

Bonneau, Anderson, Anderson, & Stajano, 2009; Zilli, Grippa, Gloor, & Laubacher, 

2006).  Clearly, snowball sampling may bias observed network structures. 

2.4 Modeling Imperfect Data in Social Network Models 

Currently several techniques exist to simulate imperfect data in social networks to 

assess the impact on Social Network Analysis measures.  The techniques involve the 

addition of extraneous nodes and arcs to mimic actors and relationships that should not be 

present in the social network and the removal of nodes and arcs to mimic missing actors 

and relationships.  The generated graphs from these techniques are compared against the 

original network, or “true” network, to evaluate the impact of the imperfect data upon 

some specified network or nodal measure.  The conclusions of these assessments are 

generally ascribed as evaluating the robustness of the measure in the presence of 

imperfect data. 
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2.4.1 Statistical Missing Data Mechanisms. 

There are three missing data mechanisms in the statistics literature: missing 

completely at random, missing at random, and not missing at random.  Missing 

completely at random defines the case where the missing data mechanism, M, does not 

depend on the values of the data, Y, though there may be a pattern present to the missing 

data due to unknown parameters,   (Little & Rubin, 2002, p. 12). 

 ݂ሺܯ|ܻ, ߶ሻ ൌ ݂ሺܯ|߶ሻ for all ܻ, ߶ (2.31) 

Missing at random defines the less restrictive situation where the missing data 

mechanism, M, depends on the data that is observed, Yobs, and not on the data that is 

missing, Ymis (Little & Rubin, 2002, p. 12). 

 ݂ሺܯ|ܻ, ߶ሻ ൌ ݂ሺܯ| ௢ܻ௕௦߶ሻ for all ௠ܻ௜௦, ߶ (2.32) 

The least restrictive mechanism is not missing at random, where the missing data 

can be a function of the values of the missing and/or observed data.  Not missing at 

random is the most difficult to deal with analytically (Little & Rubin, 2002, pp. 12, 17). 

An example of missing completely at random in a social network application 

could be non-detection of a communication between two actors.  Collecting data through 

the snowball technique may exemplify a data missing at random mechanism.  An actor 

purposely taking action to minimize their appearance of importance within a network is 

an example of not missing at random.  All three of the missing data mechanisms may be 

present when confronting social network data, particularly when applied against dark 

networks.  
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2.4.2 Comparing Networks. 

A common approach (Costenbader & Valente, 2003; Borgatti, Carley, & 

Krackhardt, 2006; Kossinets, 2006; Kim & Jeong, 2007) for assessing imperfect data 

effects upon Social Network Analysis and its associated measures, generally proceeds as 

follows: given an original network, set it as the baseline, and then conduct comparisons 

against other networks, usually generated from altering, augmenting, or reducing the 

original network.  These comparisons traditionally involve computing SNA measures for 

the original network and observing the same measure values recomputed on the generated 

networks.  These comparisons attempt to assess the impact of imperfect data on 

determining the “true” network structure, measured via differences in the SNA network 

measures, and the effects of imperfect data upon “true” nodal prominence and positioning 

within the network, measured via changes in the SNA nodal measures. 

2.4.2.1 Comparing Nodal Measures. 

The effects of imperfect data on nodal measures are measured using several 

methods.  Generally, the nodal measure under study is computed for the original 

complete network and then calculated for each sample of the network remaining after 

employing a node removal procedure.  Several difficulties arise from this approach.  The 

sampled networks are of smaller size, in terms of number of nodes, than the original 

network.  This presents the situation of nodes possessing a node measure value in the 

original graph and being subsequently absent from the sampled network, potentially 

instilling a statistical bias into the resultant analysis dependent upon the specific node 

removal procedure utilized.  This absence prohibits direct comparison of changes in 
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nodal measure values for all nodes.  Another issue that arises is the inability to compute 

some nodal measures for all of the nodes in the sampled graph.  The node removal 

process can create a sample network which is fractured into multiple components.  

Several SNA measures, such as closeness centrality or betweenness centrality, require a 

single connected component for calculation of the measure.  The node removal procedure 

can separate the network into several disjoint networks prohibiting the computation, or 

altering the calculated values and/or interpretation, for some SNA nodal measures. 

Table II-3 and Table II-4 summarize nodal measure comparison techniques found 

in the literature.  With replications, the variance and standard deviation of the value 

derived from the comparison measure in use is often calculated within the study to assist 

in characterizing the robustness. 

2.4.2.2 Comparing Network Measures. 

Network measures are naturally suited for comparisons among various graphs.  

Since they are generally designed to characterize a network, a comparison of a generated 

graph against an original version from which it was created is ascribed as accurately 

assessing the effect of the generation mechanism upon the network measures.  However, 

some of the network measures, such as characteristic path length, may prove to be 

incalculable if the generation mechanism creates multiple components.  A general 

procedure employed in the literature if this phenomenon is encountered is to calculate the 

network measures only on the largest connected component in the graph (Kossinets, 

2006, p. 254).  Computing network measures utilizing only the largest component may 
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mischaracterize the effect of the generation procedure used to create the sample networks 

from the original network. 

 

Table II-3 Statistical Based Nodal Measures Comparison Techniques 
Comparison 
Technique 

Description 
(Studies where Applied) 

Pearson Correlation 
Coefficient 

Correlation coefficient of the nodal measure values.  
Calculated for nodes occurring in both true and observed 
networks. 
(Costenbader & Valente, 2003, p. 290) 

Square of the Pearson 
Correlation Coefficient 

 (R2) 

Square of the correlation coefficient of the nodal measure 
values.  Calculated for nodes occurring in both true and 
observed networks. Interpreted as the proportion of variance 
of true measure values accounted for by the observed 
network. 
(Borgatti, Carley, & Krackhardt, 2006, p. 127) 

Kendall’s Tau (τ) 

Ordered similarity of ranked values.  Isolated nodes are 
excluded. 
Probability p  that an arbitrary pair is ordered similarly: 

( 1) 2p    
(Kim & Jeong, 2007, p. 110) 

Probability 
Distribution Similarity 

(ρ) 

Pearson correlation coefficient,  , between ik and o
ik  for 

1,...,i N  for N sampled nodes, where ik  and o
ik  are the 

measure k ’s thi  node value for the sampled and original 
network respectively, such that o

ik satisfies ( ) ( )o
S i O iP k P k

where SP  and OP  are the cumulative distribution functions of 

the sampled and original networks respectively.  Normalized 
to [0,1] by ( ) (1 )th th     where th  is the Pearson 

correlation coefficient between ik and o
ik  as if ( )SP k  is a 

linear function of k .   Isolated nodes are excluded. 
(Kim & Jeong, 2007, p. 110) 

Differences 
Difference between the nodal measure values.  Calculated for 
nodes occurring in both true and observed networks. 
(Costenbader & Valente, 2003, p. 290) 
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Table II-4 Proportion Based Nodal Measures Comparison Techniques 
Comparison 
Technique 

Description 
(Studies where Applied) 

Top 1 
Proportion of times that the most central node in the true network is the 
most central node in the observed network. 
(Borgatti, Carley, & Krackhardt, 2006, p. 127) 

Top 3 
Proportion of times that the most central node in the true network is 
among the top three most central nodes in the observed network. 
(Borgatti, Carley, & Krackhardt, 2006, p. 127) 

Top 10% 
Proportion of times that the most central node in the true network is 
among the top 10% most central nodes in the observed network. 
(Borgatti, Carley, & Krackhardt, 2006, p. 127) 

Overlap 
Number of nodes in both the top 10% of the true network and the top 
10% of the observed network, divided by the number of nodes in either. 
(Borgatti, Carley, & Krackhardt, 2006, p. 127) 

 
 

Table II-5 summarizes several comparison techniques currently employed in the 

literature to compare various network measures of a given original network against 

sample networks generated from the original through several network alteration 

techniques. 

2.4.3 Sampling of Social Networks. 

Sampling social networks to estimate network measures was introduced by 

Granovetter (1976) as a method to hurdle the requisite data collection efforts common to 

Social Network Analysis.  His sampling method is dependent upon two parameters, the 

number of samples and the corresponding sample size (Granovetter, 1976, pp. 1290-

1291).  This introduction to the SNA field specifically provided a method to assess a 

network’s density through sampling of the network, by examining only a subgraph, or 

multiple subgraphs, of the “true network”, obviating the need to collect the entire 

network’s structure.  Granovetter’s density estimation invoked a normality assumption of 
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the subgraphs’ density.  Regardless of the veracity of this particular assumption, the 

methodology proposed by Granovetter is applicable to the imperfect data problem. 

This section provides a survey of several social network sampling techniques 

employed within the literature.  The general approach involves taking several samples of 

a given size and estimating characteristics of the population according to probability 

distribution assumptions.  As illustrated by the variability and sometimes contradictory 

nature of the presented analytical studies’ conclusions, the underlying assumptions 

Table II-5 Network Measures Comparison Techniques 
Comparison 
Technique 

Description (Studies where Applied) 

Relative Error 
(ε) 

ߝ ൌ ቚ௤ି௤బ
௤బ

ቚ, where q0 is the value calculated from the true 

network and q is the value computed from the observed 
network. 
(Kossinets, 2006, p. 254) 

Tolerable Fractional 
Amount of Missing 
Data 

Maximum amount of missing data as a percentage of the total 
data where the relative error does not exceed a specified 
tolerance. 
(Kossinets, 2006, p. 254) 

Kolmogorov-Smirnov 
D-statistic 

ܦ ൌ max௫ሼ|ܨᇱሺݔሻ െ  ሻ|ሽ, where x is over the range of theݔሺܨ
random variable, F and ܨԢ are two empirical cumulative 
distribution functions. 
(Leskovec & Faloutsos, 2006, pp. 2-3) 

൫ܦHamming
௡௢௥௠ ൯ 

Normalized 
Hamming Distance 

The sum of difference between two graph structures with 
lower values equating to similarity.  Normalized for networks 
of different sizes. 

Hammingܦ 
௡௢௥௠ ൌ

Hammingܦ
݁ൗ , where e is the number of possible 

edges in a graph.  (Tsvetovat & Carley, 2007, p. 68) 
[DHamming, or Hamming Distance, is the number of edges that 
must be altered to alter one graph into matching other 
(Hamming, 1950, p. 155).] 
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regarding distributions, network structures, and missing or imperfect data mechanisms 

are critical to accurate representation of imperfect data effects on SNA. 

There are several methods present in the literature to generate sample graphs 

derived from an original network to represent imperfect data phenomenon.  One such 

approach is to generate samples of the original network with data elements removed to 

represent missing data.  The removal sampling approaches can be categorized into node 

removal and edge removal.  An additional hybrid approach involving simultaneous 

removal of nodes and edges can be applied, but increases the difficulty of separating the 

confounding effects involved in the sample generation process.  The process for the node 

or edge removal involves a mechanism to remove data, either nodes or edges, from the 

original network and then examine the subsequent sample of the original network, i.e., 

the newly generated network.  Sampling an original network via a node or edge removal 

mechanism is predominantly ascribed as investigating the effects of the boundary 

specification problem for actors, the boundary specification problem for relations, and 

non-response. 

2.4.3.1 Node Removal. 

A common model to emulate the boundary specification problem for actors and 

non-response is the random removal of nodes within a network.  Node removal as a 

missing data mechanism appears appropriate to modeling dark networks.  Some members 

and participants in dark networks, actively attempt to obfuscate their memberships, roles, 

and/or connections to those outside of the dark network.  Individuals hiding their identity 

or affiliation to a dark network are of reduced likelihood of inclusion in a social network 
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depiction of the network.  Several studies (Costenbader & Valente, 2003; Borgatti, 

Carley, & Krackhardt, 2006; Kossinets, 2006; Kim & Jeong, 2007) have taken this 

approach to investigate the impact on nodal and network measures.  These studies draw 

from numerous real world data sets and a wide range of graphs generated using various 

random network creation methods over a large parameter space.  Generally, the node 

removal mechanism is conducted via deleting nodes using probabilities derived from a 

uniform distribution. 

Several studies investigating imperfect data modeled by node removal via a 

uniform probability distribution have been conducted and presented in the literature 

(Costenbader & Valente, 2003; Borgatti, Carley, & Krackhardt, 2006; Kossinets, 2006; 

Kim & Jeong, 2007); the findings, however, are in some cases contradictory and 

highlight the difficulty of the imperfect data problem in Social Network Analysis.  

Differences in incorporated real world data sets, random network generation methods’ 

appropriateness to modeling real world social networks, and implementation specifics of 

their respective node removal mechanisms may account for some of the discrepancies 

among the conclusions.  Generally, nodes were selected for removal from an original 

social network according to a uniform probability distribution, i.e. each node is equally 

likely to be selected.  Node removal, subject to a uniform probability distribution, implies 

a missing completely at random mechanism. 

The applicability of results derived from analysis stemming from node removal 

utilizing a uniform probability distribution, in terms of implications on conducting Social 

Network Analysis on dark networks, is suspect.  It is not unreasonable to assume that 

individuals participating in a dark network may take substantial actions to actively elude 
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detection by outside organizations.  Individuals significantly invested in a dark network, 

whether due to familial or professional connections, resource control, or power derived 

from positions of authority in the network, are generally those that the Social Network 

Analyst is attempting to discover.  The measures employed by significantly invested 

individuals are assumed to be more extensive than those less invested in the dark 

network.  This implies a not missing at random data mechanism is more representative of 

the real world problem than a simplistic uniformly at random.  None of the studies 

specifically address dark networks and the associated implications, and thus their 

conclusions’ applicability to dark networks is an open question. 

Borgatti, Carley, and Krackhardt (2006) investigated the impact of a node 

removal mechanism following a uniform probability distribution and documented its 

effects on the following four nodal centrality measures: degree centrality, closeness 

centrality, betweenness centrality, and eigenvector centrality.  They generated Erdös-

Rényi random graphs for four different network sizes ranging from 10 to 100 nodes, 

varying eight density settings ranging from 1 to 90%.  They removed either 1, 5, 10, 25, 

or 50% of the nodes in the original network, the Erdös-Rényi random graph, via a node 

removal mechanism operating uniformly at random.  Their published results identified 

that the four investigated centrality measures “behave virtually identically (Borgatti, 

Carley, & Krackhardt, 2006, p. 128)” when in the presence of missing data.  Table II-6 

displays their generalizations for each of their nodal measure comparison techniques, 

each defined in Table II-3; unfortunately, the specific effects of random node removal are 

aggregated with the results of three other imperfect data modeling techniques: edge 

removal, node addition, and edge addition.  This aggregation stemmed from their 
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surprising result of “different types of error had relatively similar effects on centrality 

robustness (Borgatti, Carley, & Krackhardt, 2006, p. 134).”  However, the authors 

caveated this conclusion with the belief “that this result may be limited to random graphs 

(Borgatti, Carley, & Krackhardt, 2006, p. 134).”  Additionally, linear regression was 

conducted to determine the effects of network size and density on the accuracy, in terms 

of each of the nodal measure comparison techniques.  The regression coefficients 

indicated that “network size is only weakly related to accuracy (Borgatti, Carley, & 

Krackhardt, 2006, p. 133)” and density has virtually no effect on accuracy (Borgatti, 

Carley, & Krackhardt, 2006, pp. 128-134). 

 

Table II-6 Imperfect Data Impact on Nodal Centrality Measures 
Nodal Measure* 

Comparison Technique Imperfect Data Effect 
R2 Decreases linearly 

Top 1 
Decreases 
(similar to exponential decay) 

Top 3 Decreases linearly 

Top 10% 
Decreases linearly 
(least sensitive) 

Overlap 
Decreases 
(similar to exponential decay) 

*Nodal measures: degree, closeness, betweenness, 
 and eigenvector centralities 

(Borgatti, Carley, & Krackhardt, 2006, p. 128) 
  

 

Costenbader and Valente (2003; 2004) provided an alternative approach to node 

removal by taking repeated random samples of the network in a boot-strapping method.  

They sampled the original network by drawing nodes by randomly selecting rows in the 

adjacency matrix, uniformly at random, varying the number of nodes ultimately selected 



www.manaraa.com

 

II-54 

 

from 10 to 80% in increments of 10%.  The selection of actors by rows in the adjacency 

matrix does introduce an out-degree bias for non-symmetric directed networks, but was 

purposely chosen by the authors based upon the assumption that researchers accept non-

reciprocal nominations (Costenbader & Valente, 2003, p. 289).  Since they utilized 59 

real world networks resulting from 8 different studies, the network data suffered from 

non-response, which ranged from 51 to 100% survey response by the actors, which in 

effect, already incorporates a level of missing data.  The impact of non-response upon 

SNA nodal measure correlation to the original network was assessed via multiple 

multivariate linear regressions with mixed results on statistical significance. 

Examining real world data, Costenbader and Valente (2003; 2004) investigated 

node removal effects on the following nodal measures: in-degree, out-degree, 

symmetrized degree, betweenness and closeness centralities on both directed and non-

directional (symmetrized) networks, eigenvector centrality, integration and radiality.  The 

comparison between the nodal measures of the original and sampled graphs was 

conducted with Pearson’s correlation coefficient, ignoring actors who did not appear in 

both networks.  Table II-7 displays summarized results for the investigated centrality 

measures.  A select few of the measures and their responses under node removal are 

displayed in Figure II-6, Figure II-7, and Figure II-8, where sampling fraction is defined 

as one minus the percentage of nodes removed, i.e. the percentage remaining of the 

original network in terms of number of nodes.  Figure II-6 and Figure II-7 display results 

that are generally reconcilable with Borgatti, Carley, and Krackhardt (2006), while Figure 

II-8 displays trends that are not congruent with the other measures. 
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Table II-7 Missing Real world Data Impact on Nodal Centrality Measures 
Nodal Centrality 

 Measures Imperfect Data Effect 

In-degree 
Decreases linearly and exhibited highest correlation 
of all measures. 

Out-degree Decreases linearly. 

Degree 
(symmetrized) 

Decreases linearly and has lower correlations than 
in-degree and out-degree with some examples of 
wave-like pattern. 

Betweenness  
Decreases linearly and faster than in-degree and 
out-degree centralities. 

Betweenness 
(symmetrized) 

Decreases linearly and has lower correlations than 
in-degree, out-degree and betweenness centralities. 

Closeness 
Decreases linearly with some examples of a wave-
like pattern. 

Closeness 
(symmetrized) 

Decreases linearly with lower correlations than 
closeness 

Eigenvector 
Highly unstable with small changes in data, 
exhibits large swings in correlation. 

Integration 
Decreases linearly with correlation, nearly as high 
as in-degree. 

Radiality 
Decreases linearly with greatest variation of all 
investigated measures. 

(Costenbader & Valente, 2003, pp. 290-299) 
  

 
 

It is apparent that there are several large discrepancies between the conclusions 

drawn in Costenbader & Valente (2003; 2004) and Borgatti, Carley, & Krackhardt 

(2006).  This dissonance is most apparent for eigenvector centrality, observing the radical 

behavior for eigenvector centrality correlation on real world data in Figure II-8 compared 

against Borgatti’s, Carley’s, and Krackhardt’s conclusion of R2 decreases linearly, 

implying that correlation decreases slower than linearly.  Numerous factors could be 

contributing to this.  As identified in their paper, Borgatti, Carley, & Krackhardt (2006, p. 

125), real world data may contain systematic sampling errors whose patterns are 
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unknown.  Leading to their design of experiments statistical approach, they randomly 

generated numerous graphs under varying parameter settings to conduct their analysis.  

The large divergence between their findings and those of Costenbader & Valente (2003; 

2004) could be attributed to differences in the underlying structure of the networks.  The 

generated networks were Erdös-Rényi random graphs, whose degree distributions, 

clustering coefficients and assortative mixings may have varied greatly from the real 

world data sets used by Costenbader and Valente (2003; 2004). 

Instead of utilizing the raw SNA measure scores, Kim and Jeong (2007) 

conducted a comparison on the rank ordering of nodes within the largest component 

based upon the measures between the original and sampled graphs.  They utilized three 

real world  networks and  randomly  generated Barabási-Albert  scale-free graphs to  

 
Figure II-6 Average Correlation for In-Degree on Real world Data 

(Costenbader & Valente, 2003, p. 293) 
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investigate node-removal effects on SNA nodal centrality measures, specifically: degree, 

betweenness and closeness centralities.  Kim’s and Jeong’s (2007) examination 

determined that random node removal had significant negative effects upon sampled 

network measure correlation with the original network using Kendall’s Tau, τ, 

comparisons of actor rankings. Betweenness and closeness centralities performed 

significantly better, i.e. possessed a larger τ, than degree centrality on comparisons of 

 
Figure II-7 Average Correlation for Closeness Centrality on Real world Data 

(Costenbader & Valente, 2003, p. 295) 
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actor rankings for the Barabási-Albert randomly generated graphs.  On the real world 

networks, it was noted that “τ obtains its minimum value in an intermediate range of the 

sampling fraction.”  Figure II-9 displays the three measures’ behaviors on real world 

networks as a function of the sampling fraction, which is one minus the percentage of 

removed nodes.  This result contradicts those presented in Costenbader & Valente (2003; 

2004) and Borgatti, Carley, & Krackhardt (2006), where, generally, they assessed a linear 

decline in correlation or accuracy. 

 
Figure II-8 Average Correlation for Eigenvector Centrality on Real world Data 

(Costenbader & Valente, 2003, p. 295) 
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Figure II-9 τ Behavior on Real world Networks’ with Node Removal 

(Kim & Jeong, 2007, p. 113) 
 

 

By categorizing node rankings into deciles for a given measure and computing τ 

in a slightly different form for the Barabási-Albert randomly generated graphs, Kim and 

Jeong (2007) determined the contribution of each ranking interval of actors to τ.  Thus, 

their results illustrated that higher ranking nodes, in terms of a given measure, are 

responsible for a larger τ.  This implies that the highest ranking actors for a given 

measure in a sample provide a better representation of their associated rankings in the 

original network. 

Kim’s and Jeong’s (2007) analysis of three real world scale-free data sets 

provided similar results with a few noted differences.  They observed that betweenness 

centrality had significantly lower τ across the range of sampling fractions, percentage of 

nodes removed, for the real world networks than the randomly generated scale-free 

networks.  They assessed this as a reflection of the modular structures located within the 

real world networks.  They observed “the presence of nodes with small degree and large 

betweenness…indicates the existence of loose connections between tightly-knit 
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modules”, referenced as the “modularity effect” (Kim & Jeong, 2007, p. 112).    To 

explore this phenomenon, they conducted node removal by targeting actors with small 

correlation between degree and betweenness centrality scores as opposed to random 

sampling.  This correction for modularity produced results for betweenness centrality’s 

performance on the real world networks consistent with the results for randomly 

generated scale-free graphs. 

For degree and betweenness centralities, Kim and Jeong (2007) also examined 

how their respective cumulative probability distributions, ρ, changed as the amount of 

missing data, removed nodes, is increased on Barabási-Albert randomly generated 

graphs.  The cumulative probability distributions of degree and betweenness centralities 

appear to be resilient to random node removal as the sample networks maintain a similar 

distribution as the original network until withdrawal of a significant number of nodes, i.e. 

80% of nodes removed.   

Kim’s and Jeong’s (2007) noted superiority of closeness centrality, in terms of 

higher values of τ when confronted with uniform at random node removal, is assessed as 

resulting from the global characteristic of its calculation and its resultant insensitivity to 

the node removal mechanisms.  However, closeness centrality’s high values of τ are 

dependent upon the inclusion of hubs in the sample networks.  Kim and Jeong (2007) 

conducted node removal by each centrality measure’s score in descending order.  By 

initially removing nodes with the largest value for a given measure, the τ rank 

comparison to the original network showed dramatic decreases.  The authors noted that 

“sufficient sampling size of social individuals must be assured when access to the central 

leadership is restricted” (Kim & Jeong, 2007, p. 113).  This may have significant 
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implications when dealing with dark networks where important actors, as defined by a 

given measure, may purposely hide their presence within the network through various 

methods. 

Additionally, Kim and Jeong (2007) introduce a potential method of generating an 

approximate lower bound on τ in the case where a “true” network is unavailable.  By 

conducting a node removal on the available network data and calculating τ, this serves as 

a lower bound on τ for the complete network assuming the same proportional amount of 

missing data, i.e. removed nodes. 

Kossinets (2006; 2008) explored the impact of random node removal on SNA 

network measures using a large real world data set (n = 16,726, m ≈ 95,171) and 100 

randomly generated bipartite graphs with similar network characteristics.  The random 

node removal process incorporated deletion of an actor, and all of their associated edges, 

according to a uniform probability distribution.  The SNA network measures investigated 

included: mean vertex degree, average clustering coefficient computed as defined by 

Newman et al (2001), assortativity calculated on the unipartite projections of bipartite 

graphs, the fractional size of the largest component, and the mean shortest path length in 

the largest component.  In particular, the average clustering coefficient demonstrated very 

slow degradation in comparison with the original networks’ values, displaying less than 

10% error with 50% of nodes removed (Kossinets, 2006, p. 264).  The summarized 

results on the sampled network measures performance in comparison with the original 

networks are included in Table II-8. 
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Table II-8 Random Node Removal Impact on Network Measures 

Network Measure 
Missing Data 

Effect 

% missing data resulting in 
10% relative error in measure 

Real world 
Data 

Random 
Graphs 

Mean vertex degree 
Decreases 

linearly 
10% 10% 

Average Clustering 
(Newman et al 2001) 

No change - - 

Assortativity 
(unipartite projection) 

Small increase - 15% 

Fractional size of 
largest component 

Decreases 8% 10% 

Mean shortest path 
length (in largest 
component) 

Increases* 30% 25% 

*Until fragmentation phase change at ≈75% missing data  
  (Kossinets, 2008, pp. 17-25) 
    
 

2.4.3.2 Edge Removal. 

Similarly to the node removal approach, emulating the boundary specification 

problem for relations and non-response is achieved via the random removal of edges 

within an original network.  It has been noted that sampled graphs derived from a 

uniformly distributed edge removal process “will be very sparsely connected and will 

thus have large diameter and will not respect community structure” (Leskovec & 

Faloutsos, 2006, p. 3). 

Borgatti, Carley, and Krackhardt (2006) conducted edge removal to investigate 

the impact on four nodal SNA measures: degree centrality, closeness centrality, 

betweenness centrality, and eigenvector centrality.  Generating Erdös-Rényi random 

graphs for four different network sizes ranging from 10 to 100 nodes, with eight various 

densities ranging from 1 to 90%, they removed 1, 5, 10, 25, or 50% of the edges in the 
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original network, which results in Erdös-Rényi random graphs. The edge removal was 

conducted via deleting edges from probabilities derived from a uniform distribution.  

Their edge removal results are aggregated with other imperfect data modeling techniques 

and their generalized conclusions are presented in Table II-6. 

Sterling (2004) investigated the impact of missing data in the form of an edge 

removal mechanism upon the ability to detect subgroups, i.e. community detection, using 

an algorithm developed in her thesis.  The approach involved comparing the proportion 

of sampled networks producing the same 2-plexes as the original real world complete 

network data set (Sterling, 2004, p. 133); a 2-plex is a subgraph where all members 

possess ties with at least all minus two other members (Wasserman & Faust, 1994, p. 

265). 

Four different edge removal mechanisms were examined in Sterling’s 2004 study: 

uniform at random, uniform at random of edges connecting nodes both of lower than 

average degree, uniform at random of edges connecting nodes both of higher than 

average degree, and uniform at random of edges connecting individuals who both belong 

in multiple subgroups.  Each edge removal mechanism was intended to capture a 

phenomenon that could potentially occur with dark networks.  The first method is the 

same uniform at random edge removal seen in other studies representing a simplified 

assumption of each relationship among actors is equally likely to be missing.  The second 

method is attempting to replicate low level actors’ relationships that are more likely to be 

missed due to the collection efforts ignoring the involved nodes because of assumed 

insignificance.  The third method assumes important actors, such as hubs with their 

associated high degrees, are purposely trying to hide their significant positions in the 
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network.  The fourth method models liaisons among different groups within the networks 

attempting to mitigate collection attempts (Sterling, 2004, p. 135).  Sterling’s results of 

each edge removal mechanism are summarized in Table II-9. 

 

Table II-9 Various Edge Removal Mechanisms’ Impact on Community Detection 
Edge Removal 

Mechanism 
% edges removed 
resulting in ࢖ෝ ൌ ૙ 

Uniform Random 10% 
Between lower than 
average degree nodes 

7.5% 

Between higher than 
average degree nodes 

12.5% 

Between nodes in 
multiple subgroups 

>50% 

(Sterling, 2004, pp. 137-146)
  

 

Kossinets (2006; 2008) also simulated a non-response effect through an edge 

removal mechanism by randomly selecting a portion of the actors within the network and 

then removing all edges interconnecting this node subset of the graph.  The subset of 

actors is included in the network if they possess other edges besides those that were 

eliminated.  Of importance, relationships did not need to possess a reciprocal nomination 

to be included within the network.  This is a substantial departure from the traditional 

uniform at random removal processes and purposely designed to replicate a non-response 

effect.  Kossinets’ empirical results of the non-response effect on network measures are 

summarized in Table II-10. 
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Table II-10 Non-Response Edge Removal Impact on Network Measures 

Network Measure 
Missing Data 

Effect 

% missing data resulting in 
10% relative error in measure 

Real world 
data 

Random 
graphs 

Mean vertex degree Decreases 30% 30% 
Average Clustering 
(Newman et al, 2001) 

Decreases 35% 35% 

Assortativity 
(unipartite projection) 

Decreases 35% 20% 

Fractional size of 
largest component 

Decreases 30% 50% 

Mean shortest path 
length (in largest 
component) 

Increases 50% 50% 

  (Kossinets, 2008, pp. 17-25) 
    
 

Kossinets (2006; 2008) utilized affiliation networks and the unipartite projection 

to one mode actor networks to investigate the boundary specification problem for 

relations.  Noting that an actor network is a collection of overlapping cliques, an event in 

a bipartite network represents an affiliation or interaction context which contains a clique.  

Since relations can be derived from multiple reinforcing contexts, each clique belongs to 

one or more events.  Justification for this technique derives from the general practice in 

SNA of collapsing multiple relationships between actors into a single linkage to calculate 

SNA measures.  By grouping relationships by context, i.e. relationships grouped to a 

single event, the removal of an event and thus its collection of relationships can simulate 

a relations’ boundary specification problem, namely, the negative impact of excluding a 

significant relationship context. 

Kossinets (2006), utilizing bipartite graphs and the unipartite projection, 

investigated the effects of missing edges on network level measures via the random 
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removal of the corresponding bipartite affiliation of the actors.  This technique simulates 

a boundary specification problem for relations, due to its removal of a context upon 

which the relationships were formed.  An affiliation is deleted, removing all of its edges 

adjoining it to actors, thus severing the relationships between those actors for that 

context.  This contextual edge removal, as opposed to random edge removal in 

comparison, provides a different removal mechanism to better simulate a boundary 

specification for relations error.  One hundred random bipartite graphs were constructed, 

each with the same number of actors, affiliation groups (articles), and edges 

corresponding to a single real world data set, the collaboration graph resulting from 

authors and articles contained within the Condensed Matter section of the Los Alamos E-

print Archive for the years 1995 through 1999.  Of note, the degree distribution of the 

randomly generated graphs possessed a Poisson degree distribution, while the exemplar 

real world data followed a power law degree distribution.  The real world data set showed 

greater disassortativity on the bipartite graph and positive assortativity on the unipartite 

projection than the randomly generated graphs.  Kossinets’ evaluated the effect of 

contextual edge removal on several network measures and the results are summarized in 

Table II-11. 

2.4.4 Inclusion of Incorrect Social Network Data. 

The previous discussion and reference material in the literature exhibited the 

reduction of data in a network to assess the impacts upon various measures.  As discussed 

in the description of the boundary specification problems for actors and relations, it is 

quite conceivable to collect extraneous social network data and include it in the analysis.  
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Borgatti, Carley, and Krackhardt (2006) explored the effects of the inclusion of 

extraneous data on SNA nodal centrality measures. 

 

Table II-11 Contextual Edge Removal Impact on Network Measures 

Network Measure 
Missing Data 

Effect 

% missing data resulting in 
10% relative error in 

measure 
Real world 

data 
Random 
graphs 

Mean vertex degree 
Decreases 

linearly 
14% 10% 

Average Clustering 
(Newman et al 2001) 

Increases 25% 10% 

Assortativity 
(unipartite projection) 

Increases 30% 10% 

Fractional size of 
largest component 

Decreases 15% 35% 

Mean shortest path 
length (in largest 
component) 

Increases* 40% 20% 

*Until fragmentation phase change at ≈90% missing data  
  (Kossinets, 2008, pp. 17-25) 
    
 

2.4.4.1 Extraneous Node Addition. 

Borgatti, Carley, and Krackhardt (2006) investigated the impact of node addition 

on four nodal SNA measures: degree centrality, closeness centrality, betweenness 

centrality, and eigenvector centrality.  Generating Erdös-Rényi random graphs for four 

different network sizes ranging from 10 to 100 nodes, with eight various densities 

ranging from 1 to 90%, they added 1, 5, 10, 25, or 50% additional nodes to the original 

network, which was also an Erdös-Rényi random graph. The node addition was 

accomplished by setting the node’s degree to the same as a node in the network selected 
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at random from a uniform distribution.  With the new node’s degree set, the node was 

incorporated into the network by randomly assigning its edges to nodes already present in 

the network.  The node addition results are aggregated with other imperfect data 

modeling techniques and the general conclusions are presented in Table II-6. 

2.4.4.2 Extraneous Edge Addition. 

Similarly to their extraneous node addition investigation, Borgatti, Carley, and 

Krackhardt (2006) investigated the impact of edge addition on four nodal SNA measures: 

degree centrality, closeness centrality, betweenness centrality, and eigenvector centrality.  

Generating Erdös-Rényi random graphs for four different network sizes ranging from 10 

to 100 nodes, with eight various densities ranging from 1 to 90%, they added 1, 5, 10, 25, 

or 50% additional edges to the original network, which was also an Erdös-Rényi random 

graph. The edge addition procedure was not explicitly defined in the published results, 

but it can be inferred that two nodes were selected at random from a uniform probability 

distribution and an edge was established between them unless one already exists.  The 

edge addition results are aggregated with other imperfect data modeling techniques and 

the general conclusions are presented in Table II-6. 

2.4.5 Snowballing Data Collection Effects on Imperfect Data. 

Snowballing is a generally accepted data collection technique for social networks.  

However, the mechanisms involved create biases and significantly alter some SNA 

measures in the networks generated via snowballing.  Studies have been conducted to 

investigate these biases and attempt to provide statistical corrections (Illenberger, 

Flotterod, & Nagel, 2008).  Others have been conducted to modify the snowball data 
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collection algorithm to purposely skew the sample networks measures in a desirable 

manner (Zilli, Grippa, Gloor, & Laubacher, 2006; Tsvetovat & Carley, 2007). 

2.4.5.1 Snowballing Data Collection Bias Corrections. 

The snowballing data collection technique possesses some inherit biases which 

artificially skew SNA measures when they are applied to the collected networks.  Due to 

the algorithm’s selection of a seed node(s) and then proceeding to collect all actors linked 

to the seed node(s), high degree nodes are more likely to be selected early in the 

algorithm than low degree nodes.  This also extends to a higher likelihood of early 

selection of nodes that are connected to high degree nodes (Illenberger, Flotterod, & 

Nagel, 2008, p. 4).  These two biases have direct effects on SNA measures when the 

snowball technique is applied to scale-free graphs, with their right-skewed degree 

distributions and to networks with assortative, or disassortative, mixing.  Some bias 

corrections for snowball sampling are displayed in Table II-12. 

2.4.5.2 Snowballing Data Collection with Fixed Choice Effect. 

One variant to snowballing data collection involves incorporating the fixed choice 

effect on the sampled nodes.  When an actor is investigated to determine their links, only 

a fixed number are discovered.  If relationships do not have to be reciprocated by both 

actors for inclusion into the network model, dependent upon the number of links returned 

under the fixed choice effect, some network measures can be computed with surprising 

accuracy.  Bonneau, Anderson, Anderson, and Stajano (2009) utilized the fixed choice 

effect generated from the public view of individuals’ Facebook accounts, a social 

network website, to approximate SNA measures of a subset of Facebook users.  
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Facebook’s public view of an individual only displays eight friends.  They approximated 

two nodal measures: degree and betweenness centralities; and several network properties: 

shortest paths, dominating sets and community detection through modularity.  Their 

conclusions illustrated that despite given only a fixed number of random links from each 

actor, accurate approximations of some measures can be constructed, though accuracy is 

dependent on the number of links identified for each node. 

2.4.5.3 Snowballing Data Collection with Targeted Search. 

Due to the significant application of SNA in determining important individuals 

within the network, the snowballing data collection technique presents itself as a very 

intensive effort to fully explore the complete network.  Several studies have been 

conducted investigating a modification to snowballing.  Instead of investigating all 

Table II-12 Network Measures’ Bias Corrections for Snowball Sampling 
Network 
Measure Bias Correction 

Mean vertex 
degree ۄ݇ۃ  

ሺ௜ሻۄ݇ۃ ൎ
∑ ௞ೡ ௉ೖೡ

ሺ೔ሻൗ
ೡאೇሺబ…೔ሻ

∑ ଵ ௉ೖೡ
ሺ೔ሻൗ

ೡאೇሺబ…೔ሻ
 where ܸሺ଴…௜ሻ ൌ ܸሺ଴ሻ ׫ ׫… ܸሺ௜ሻ is the set 

of all nodes sampled before or in iteration i which is of size n(0…i), 

kv is the degree of sampled node v, and ௞ܲ
ሺ௜ሻ ൌ 1 െ ቀ1 െ

൫௡೔షభ൯

ே
ቁ
௞

  

with N being the size of the total network 

Degree Exponent 
(power-law 
degree 
distribution) 
  

ሺ௜ሻߛ ൌ 1 ൅ ଵ
భ

∑ భ ುೖೡ
ሺ೔ሻൗ

ೡאೇᇲሺబ…೔ሻ
∑ ൬୪୬ ೖೡ

ೖmin
൰ ௉ೖೡ

ሺ೔ሻൗ
ೡאೇᇲሺబ…భሻ

 where ܸᇱሺ଴…௜ሻ is the 

set of all vertices sampled before or in iteration i that follow the 
power-law distribution which is of size ݊ᇱሺ଴…௜ሻ and kmin is the 
smallest degree for which the power-law holds 

Clustering 
Coefficient 
Cv 

ሺ௜ሻܥ ൌ
∑ ஼ೡ ௉ೖೡ

ሺ೔ሻൗ
ೡאೇሺబ…೔ሻ

∑ ଵ ௉ೖೡ
ሺ೔ሻൗ

ೡאೇሺబ…೔ሻ
 where ܥ௩ ൌ

ଶ௘ೡ
௞ೡሺ௞ೡିଵሻ

 and ev denotes the 

number of edges between v’s neighbors 
 (Illenberger, Flotterod, & Nagel, 2008, pp. 4-7)
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recently included actors at each iteration, only a subset of actors is explored to discover 

their relationships. This subset is chosen via SNA measures in an attempt to determine 

the “best” actor to investigate (Zilli, Grippa, Gloor, & Laubacher, 2006; Tsvetovat & 

Carley, 2007).  This is analogous to a heuristic search.  Both studies selected a single 

actor to investigate at each iteration.  In Tsvetovat’s and Carley’s study using randomly 

generated graphs, the actor to be explored was selected by their degree or betweenness 

centralities in the sampled network at each iteration. To test the performance of selecting 

actors by the specified SNA measure, the sampled network was compared via Hamming 

distance to the “true” network after a specified number of iterations.  The results 

indicated that selection by degree or betweenness centralities performed better than 

random selection (Tsvetovat & Carley, 2007, pp. 69-70). 

A real world data study conducted by Zilla, Grippa, Gloor, and Laubacher (2006) 

utilized betweenness and closeness centralities to select the next actor for each snowball 

iteration.  The sampled graphs’ betweenness and closeness centrality scores were 

compared to the “true” values.  The experimental conclusions showed a quicker 

convergence of the sampled graphs’ measures, either betweenness or closeness centrality, 

when snowballing was accomplished via selecting the node with the highest betweenness 

or closeness centrality, respectively.  The stated reasoning lies within the global nature of 

betweenness and closeness centrality.  The authors identified that “hubs that connect the 

different parts of the community, determine the global characteristic of the community” 

(Zilli, Grippa, Gloor, & Laubacher, 2006, p. 6).  Through selection of actors to explore 

via betweenness and closeness centralities, there is an increased likelihood of including a 

hub into the sampled graph in an earlier iteration than by randomly selecting nodes. 
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2.5 Cognitive Social Structures 

Krackhardt (1987) introduced cognitive social structures as an alternative 

perspective to avoid the informant accuracy problem.  Noting that much of the social 

science theory of human behavior and interactions was based upon individuals’ cognitive 

and psychological perceptions as opposed to objective behavior, Krackhardt partitions a 

network into each of the actor’s own perspectives.  Instead of the traditional sociomatrix 

representing the network, n sociomatrices, one for every actor in the network, are 

generated.  Each sociomatrix represents an individual actor’s perspective on the existence 

of relationships within the entire network.  Individual actors assess the existence of 

relationships between other actors within the network (Krackhardt, 1987, pp. 113-114). 

2.5.1 Consensus Structure Aggregation. 

These numerous perspectives are aggregated into a single representation of the 

social network.  Krackhardt (1987, pp. 115-118) presents three separate aggregation rules 

to construct the single sociomatrix to be used in the subsequent traditional social network 

analysis.  However, additional value can be obtained from having multiple perspectives 

of the interactions within the social network.  The first aggregation technique, referenced 

as slice, involves a single actor’s perspective of the whole social network.  It is simply 

one of the n sociomatrices that are provided by the network’s actors (Krackhardt, 1987, 

pp. 115-116).  Demonstrated in the empirical example accompanying the introduction of 

cognitive social structures, potential insights can be gleaned from comparing an 

individual actor’s perspective of the network and their own position within it against the 
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aggregation of the other actors, compiled via either or both of the other two aggregation 

techniques (Krackhardt, 1987, pp. 119-125). 

Another aggregation technique, locally aggregated structures, represents the 

traditional social network construction process.  Relationships in the sociomatrix 

representing the entire network are included based upon single nomination or reciprocal 

nomination from the actors involved in the dyad.  Extended to cognitive social structures, 

each element in the aggregated sociomatrix is constructed from either the intersection or 

union of the corresponding elements from the sociomatrices of the corresponding actors 

of the representative dyad.  A relationship exists in the network if one or both, dependent 

upon the nomination rule, of the actors involved state the relationship exists in their 

respective sociomatrix.  The intersection of the sociomatrices’ data elements corresponds 

to a reciprocated nomination rule, while the union designates a single-nomination rule for 

inclusion in the aggregated social network (Krackhardt, 1987, pp. 116-117). 

The final aggregation technique, consensus structures, constructs the aggregated 

sociomatrix as a function of all of the individual actor perceptions.  In general 

application, the determination of each element in the aggregated sociomatrix results from 

a simple threshold function which tallies the number of sociomatrices, out of the n actor 

matrices, that identify the specific relationship.  If the total number exceeds an analyst 

specified threshold, the relationship is included in the aggregated sociomatrix 

(Krackhardt, 1987, pp. 117-118). 
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2.5.2 Consensus Structure Aggregation Limitations. 

There are several shortcomings of consensus structure aggregation.  First, the 

requirement of possessing actor perspectives for all individuals within the social network 

implies each actor must indicate and characterize the relationships existing between all 

pairs of actors within the network.   As this must be accomplished for each relation 

modeled, the data collection requirements may be quite extensive as the number of actors 

within the network expands or the number of relations grows.  Within the literature, 

consensus structure aggregation has been performed on relatively small networks, 

approximately twenty-five actors (Krackhardt, 1987; Neal, 2008).   

Neal (2008) applied consensus structure aggregation as a method to mitigate 

missing data.  She investigated relationships among school children and as a condition of 

dealing with minors had to obtain parental consent forms.  As a result, only fifteen of the 

twenty-three students participated in the data collection.  This relaxation of obtaining 

perspectives for all actors in the social network due to experimentation necessity utilized 

a threshold function to construct the network.  If a specified number of actors identify an 

existing relationship between two actors, a relationship is determined to exist, even if 

neither of the actors involved submitted data.  This allows information to be acquired on 

the individuals not participating in the data collection. 

The common usage of a threshold function in consensus structure aggregation 

highlights a significant gap in the literature.  There are no guidelines on what is an 

appropriate threshold value for a given network.  Krackhardt (1987) in his presentation of 

the empirical application of a threshold function arbitrarily chose one-half, i.e. at least 

half of the actors must nominate a relationship for it to be included in the aggregated 
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social network.  Neal (2008) applied three different thresholds for comparison: a majority 

rule, an average rule, and a binomial rule.  The majority rule is equivalent to a 

straightforward threshold of one-half, as applied by Krackhardt (1987).  The average rule 

is not as stringent as the majority rule, and sets the threshold as the average number of 

respondents reporting a tie between actors.  The binomial rule uses a value derived from 

the binomial distribution as the threshold to determine if a relationship is deemed to exist.  

For each pair of actors, the threshold is set at the value obtained from the binomial 

cumulative distribution function for a given α, with the number of trials defined as the 

number of respondents who reported on the pair and the probability of success equaling 

the total number of relationships identified across all pairs and sources divided by the 

total possible number of relationships across all pairs and sources (Neal, 2008, pp. 150-

152). 

The general application of the threshold function involves a common threshold 

for all relationships for entry into the aggregated social network, with the exception of 

Neal’s (2008, pp. 151-152) binomial rule.  This common standard is appealing due to its 

ease of implementation.  However, as cognitive social structures have been generally 

applied to small networks, it can safely be assumed, particularly from the context of the 

empirical studies, that all actors involved are aware of the other actors and to some extent 

the inter-relationships among them.  If larger networks are under investigation, this 

assumption may not be sound, especially if examining dark networks.  Potentially, larger 

networks could be decomposed into smaller sub-networks to address this assumption; 

though the impact of network decomposition upon consensus structure aggregation is an 

open research question. 
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In a large or dark network context, as each actor provides their perspective on the 

network, they may be queried about relationships among actors of whose involvement in 

the social network they may not even be aware.  As most sources provide information of 

the workings and organization and are not explicitly questioned on relationships and 

actors, this network perspective effect can even be more pronounced.  Determining a 

threshold based upon the number of actors in the network may artificially skew the 

resulting aggregated social network representing the cognitive social structure. 

If a source is unaware of the existence of one or both of the actors in the dyad 

under consideration, then they must be unaware of any potential relationship existing 

among them.  Under the current application of thresholds found in the literature, if only a 

small proportion of a social network are aware of a few individuals, despite complete 

agreement on their inter-relations the relationships may fail to reach the specified 

threshold due to remaining sources non-confirmation of the dyad. 

2.6 Bayesian Approach to Imperfect Social Network Data 

Butts (2003) introduces a Bayesian approach to construct conditional probability 

distributions of a social network model utilizing several information sources of unknown 

reliability.  The conditional probability distributions are used to simulate the joint 

probability distribution to ascertain quantities of interest.  The joint probability 

distribution can also be used to construct point estimates of the joint posterior mode of 

the distribution and the modes of the individual edges of social network model resulting 

from an aggregation of the information sources (Butts, 2003, p. 129).  Butts’ provided 

framework enables an assessment of informant accuracy (Butts, 2003, p. 132). 
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Several assumptions and specification of prior probability distributions are 

necessary to implement the Bayesian approach.  Butts assumes the set of vertices 

composing the social network graph is known (Butts, 2003, p. 107).  The underlying 

social network graph’s parameters are assumed to be known a priori, thus Social 

Network analysts must have, at the minimum, insight into characteristics of the network’s 

structure (Butts, 2003, p. 110).   Resulting from the Bayesian implementation, an 

individual arc inference is assumed to be independent of the other arcs.  Thus, an 

inference or conclusion on the status of an arc is independent of inferences of other arcs 

(Butts, 2003, p. 113.).  The methodology incorporates multiple sources providing social 

network data.  An information source provides social network data with associated false 

positive and false negative probabilities, Type I and Type II error, which are assumed to 

be independent of each other (Butts, 2003, p. 115).  The distribution of the Type I and 

Type II errors is assumed and specified by the Social Network analyst for each 

information source (Butts, 2003, p. 121). 

The prior probability distributions of underlying network graph parameters and 

source Type I and Type II error assumptions are necessary to utilize the Bayesian 

framework to compute posterior conditional probability distributions of the final social 

network model constructed from this application.  Quantities of interest are then 

estimated by simulated drawings from the joint probability distribution via a Gibbs 

sampler which utilizes the constructed posterior conditional probability distributions 

(Butts, 2003, p. 117).  The conditional probability distributions are derived by estimating 

their associated parameters via “simple counts of successful and unsuccessful 
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identifications of the non-existence of ties, combined with the prior parameters (Butts, 

2003, p. 119).”  

The joint probability distribution can generate point estimates of the joint 

posterior mode of the distribution and the modes of the individual edges of the social 

network model resulting from an aggregation of the information sources.  The complexity 

due to high dimensionality may necessitate heuristic search techniques to maximize the 

likelihood function.  The aggregated social network model is constructed by examining 

the posterior joint probability distribution for each arc individually and including arcs 

whose posterior probability is greater than a specified threshold of 0.5 (Butts, 2003, p. 

129). 

Information source accuracy can be assessed by examining the posterior 

distribution Type I and Type II errors associated with each source.  Butts noted that the 

Type I and Type II error posterior probability distributions are not independent (Butts, 

2003, pp. 132-133).  However, experimentation conducted on 15 node networks found 

the approach was robust to inaccuracy in the Type I and Type II errors’ prior probability 

distribution parameters (Butts, 2003, p. 134). 

2.6.1 Bayesian Approach Limitations. 

When investigating dark networks, assumptions made on the presupposed 

underlying network structure could significantly depart from the actual social network.  

The Bayesian approach was introduced with a caution, “each researcher, however, should 

be careful to select network priors which are accurate depictions of his or her prior 

information, and should avoid blind reliance on pre-packaged choices (Butts, 2003, p. 
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111).”  Considering it is unlikely for any single or even collection of sources to possess 

the ability to accurately characterize a social network’s structure with enough specificity 

to accurately estimate network parameters, heeding this caution would prove to be 

difficult or impractical for the Social Network analyst.  This difficulty of accurately 

estimating the network’s structural parameters as an input to implementing this Bayesian 

technique imposes an additional challenge upon the Social Network analyst which may 

reduce likelihood of adoption or correct execution.  Additionally, no method was 

provided to validate this a priori assumption.  The potential exists for this assumption to 

substantially impact the subsequent SNA results and conclusions. 

The Social Network analyst must specify the probability distribution types and 

their associated parameters characterizing Type I and Type II errors which must be 

accomplished for each information source.  Initial testing by Butts, indicated a 

preliminary robustness to inaccuracy in the analyst specified probability distributions’ 

parameters, further testing would be necessary to validate this claim on larger networks 

or graphs with varied structural characteristics (Butts, 2003, p. 134).  Despite this 

presumed robustness, the methodology assesses informant sources’ accuracy based on 

assumptions of the sources’ accuracy.  In some instances, social network analysts would 

probably balk at having to assess sources’ accuracies based upon very limited data or no 

previous reporting history.  

The Gibbs sampler allows simulation of draws from the joint posterior probability 

distribution, but is theoretically based upon a convergence in the limit.  Thus, utilizing 

the Gibbs sampler introduces several standard issues associated with simulation 

approaches.  Depending on the particular instantiation, the Gibbs sampler may have an 
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associated burn-in time, iterations occurring prior to convergence for which those results 

must be discarded, and a sampling frequency (Butts, 2003, p. 120).  The complexity 

involves determining the number of iterations necessary for convergence.  As these 

necessary specifications are critical to the methodology, proper execution would probably 

require automated decision criteria as they are probably beyond the scope and expertise 

of typical social network analysts. 

2.7 Social Network Source Data 

Sources provide information on actor inclusion in a social network via reporting 

on the existence of relationships among individuals.  Sources identify, and sometimes 

quantify, relationships among actors, which in a SNA setting occurs by nominating dyads 

for inclusion into the social network model.  Simultaneously and unwittingly, sources 

implicitly identify null relationships, dyads that are not present in the network.  As 

sources provide listings of existing relationships between actors, information on the 

network structure can be gleaned from the relationships not explicitly mentioned. 

Each source provides a social network model, either a limited or complete 

representation of the organization under investigation.  Much of the focus in the 

traditional application of SNA is directed upon the relationships nominated by each 

source.  Generally neglected are the null relationships, the nonexistence of interaction 

between two actors, identified by each source.  Given that social networks are often 

sparse, the number of identified null relationships provided by sources, albeit not 

explicitly, will generally compose the majority of the information delivered. 
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Sources identify existing relationships within a social network, generally by 

explicitly identifying actors and the interrelationships among them.  If a source identifies 

n actors and their associated dyads, they are in fact commenting on n(n-1) directed 

relationships or n(n-1)/2 undirected relationships.  As a source identifies m relationships 

among the identified n actors, it will be assumed that the remaining potential dyads are 

null relationships, totaling n(n-1) – m or [n(n-1)/2] – m for directed or undirected 

networks, respectively.  Thus, dyads are identified as absent by either the source’s 

explicit confirmation or by implicit confirmation by the source reporting on both actors 

of a dyad but failing to confirm an existing relationship between them.  Empirically 

observed, social networks are generally considered sparse networks or low density 

networks; thus, the number of relationships present in the network is substantially less 

than the number of null relationships. 

When constructing social network models, generally all information provided by 

sources is incorporated into the model.  In some cases, social network analysts may 

withhold sources’ information due to suspicions of inaccuracies or duplicitous behavior.  

This determination of source reliability is based upon a number of considerations 

including previous reporting accuracy, inherent source trustworthiness, and other factors.  

Ideally, assessing source reliability is based upon confirmation or discrediting of previous 

reporting. 

Confirming or discrediting reported data can be accomplished when the true 

social network model is known.  Due to difficulties in collecting social network 

information even with cooperating actors, let alone a dark network, the likelihood of 

possessing a correct model is often low.  Additionally, possessing the true social network 
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model obviates the requirement for acquiring sources of information reporting on the 

network. 

2.7.1 Source Evaluations. 

The DoD’s primary definition of a source is “a person, thing, or activity from 

which information is obtained (Department of Defense, 2001, p. 429).”  The importance 

of a source’s reliability and the credibility of their provided information is identified in 

DoD doctrine.  However, despite providing a scale specifying levels of reliability and 

credibility as recreated in Table II-13, no scoring criteria are detailed (Department of 

Defense, 2004, pp. III-33 - III-35). 

 

Table II-13 Evaluation of Source Reliablity and Information Credibility 
Reliability of the Source Credibility of the Information 

A Completely Reliable 1 Confirmed by Other Sources 
B Usually Reliable 2 Probably True 
C Fairly Reliable 3 Possible True 
D Not Usually Reliable 4 Doubtful 
E Unreliable 5 Improbable 
F Reliability Cannot be Judged 6 Truth Cannot be Judged 

(Figure III-17 in Department of Defense, 2004, pp. III-35)
    
 

A source’s reliability is defined by the probability of correctly reporting an event 

occurring and the probability of correctly reporting the nonoccurrence when appropriate 

(Schum & Kelly, 1973, p. 406).  Encapsulating this definition mathematically, a source’s 

reliability is defined by their reports’ false positive and false negative probabilities.  In a 

SNA application, a source’s reliability is determined by their correct reporting of the 

status of an existing or non-existing relationship between two actors. 
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An unreliable source is defined by the analyst, in which the source’s reporting 

does not meet an acceptable level of reliability.  Thus an unreliable source is defined by 

the situation faced by the SNA analyst.  If the SNA conclusions are associated with high 

operational risk decision-making, the acceptable level of reliability may be greater than 

when compared against low operational risk decisions.  

In dealing with dark networks, an additional consideration in data collection is 

deceptive sources.  Deceptive sources are intentionally providing inaccurate information 

and, if unrecognized, are mathematically no different than unreliable sources.  However, 

deceptive sources may collude to present multiple sources providing confirming reports, 

making detecting their inaccuracy more difficult, creating a “Jones’ Dilemma” 

(Department of Defense, Joint Publication 3-13.4, 2006, pp. A-1).  Multiple reports 

providing confirmation of the same data increase the likely acceptance of the imperfect 

information.  Some of the provided information may be accurate to further improve the 

likelihood of acceptance and disguise the introduction of imperfect information. 

2.7.2 Individual Source Assessment. 

Individual sources will need to be characterized to determine their validity.  

Several attempts to predict accuracy are present in the literature; however, past efforts 

defined accuracy for a source relative to a known true social network.  These studies 

investigated predicting the accuracy of a source by examining characteristics of the 

source and relating them to its overall performance, measured by comparing the source’s 

reporting to the known social network.  This is useful as a forensics methodology and a 

predictive model given that the analyst has accepted the inherent risk of applying 
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generalities to a specific problem, despite potential differences rendering the generalities 

non-applicable.  Unfortunately, considering the risks and implications faced by 

government organizations employing SNA against dark networks, applying broad based 

generalities derived from open, bright networks may precipitate serious unintended 

consequences. 

2.7.3 Informant Accuracy Assumptions. 

Nonetheless, utilizing data collection sources which possess limitations 

necessitates some assumptions on the sources and the data derived from them.  Romney 

and Weller (1984, p. 61) present four assumptions in their investigation of predicting 

informant accuracy.  These assumptions will be expanded upon and extended to account 

for dealing with a collection of sources.  

Assumption 1.  There exists an objective set of “facts” or reality pertaining 
to the pattern of interaction of the group under investigation. 

Assumption 2.  Individuals vary in the extent to which they know all the 
facts or reality pertaining to the pattern of interaction of the group.  We 
refer to this as knowledge. 

Assumption 3.  The knowledge of each individual about the group is 
assumed to be independent of the knowledge of every other individual. 

Assumption 4.  The correlation of knowledge between any two subjects is 
a function of the extent to which each has knowledge of the objective 
reality.  Specifically, the correlation of knowledge between individual A 
and individual B is the product of the correlation of individual A with the 
“truth” and of individual B with the “truth”.  (Romney & Weller, 1984, p. 
61) 

2.7.3.1 Examining Informant Accuracy Assumption One. 

Further clarification is required for examining each of these assumptions in the 

context of the methodological approach presented in Chapter III.  Assumption one states 
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“there exists an objective set of ‘facts’ or reality pertaining to the pattern of interaction of 

the group under investigation (Romney & Weller, 1984, p. 61).”  The collection of 

information generated from all sources produces a representation of the objective social 

network.  Unfortunately, this representation is most likely not an exact model of reality; 

and, even with full participation from all actors involved in the social network, a 

completely accurate model is probably unobtainable.  The representative social network 

that the analyst obtains from various information sources, will be missing data elements 

and probably contain spurious data, particularly in the case when dealing with dark 

network organizations. 

The objective is to remove spurious information while minimizing the amount of 

missing data.  Undoubtedly, any process detecting incorrect information also has a 

nonzero probability of misclassifying correct information, i.e. a false positive.  

Conversely, correct information can be misclassified as erroneous and selected for 

subsequent removal, i.e. a false negative.  Extending this schema to the collection of 

sources, a source identified as generating substantial amounts of erroneous data will be 

classified as an unreliable source and all information obtained from that specific source is 

discarded in the analysis. 

2.7.3.2 Examining Informant Accuracy Assumption Two. 

Assumption two states “individuals vary in the extent to which they know all the 

facts or reality pertaining to the pattern of interaction of the group.  We refer to this as 

knowledge (Romney & Weller, 1984, p. 61).”  Romney and Weller were addressing 

social networks where the information was provided by individuals reporting their own 
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interactions.  For the purposes here, individuals can be extended to individual sources.  

Each individual source possesses inherent capabilities and limitations generating their 

own perspective of the social network.  Some sources are unable to collect specific types 

of relationships.  Electronic surveillance or intercepting communications will provide a 

view of the social network but may be oblivious to face-to-face interactions.  Human 

sources reporting on interactions within the social network are likely to be constrained to 

interactions they can directly observe or learn about from trusted confidants. 

Each source may paint a different picture of the social network; hopefully, the 

collective canvas formed from their individual portrayals presents a complete picture of 

the social network.  However, in terms of validating individual sources, the overlap 

between the sources will enable the decision criteria for source inclusion or exclusion.  

To assess an individual source, redundant information with other sources is necessary to 

validate the individual source.  A source may contain some information that is redundant 

with the other sources and some information that is novel to the collection.  Judging the 

accuracy and validity of the redundant information enables a decision to be made on the 

inclusion or exclusion of the novel information.  Utilizing individual source information 

that can be compared, vetted, and validated against the aggregated sources will enable the 

accuracy of the source to be assessed.   

2.7.3.3 Examining Informant Accuracy Assumption Three. 

Assumption three states “the knowledge of each individual about the group is 

assumed to be independent of the knowledge of every other individual (Romney & 

Weller, 1984, p. 61).”  Individual is extended to individual sources and the group refers 
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to the social network under study.  Dark networks, when confronted with opposing 

government forces, may initiate a deception campaign.  An individual or perhaps several 

sources could purposely provide false information on the interactions within the social 

network.  It would be very difficult to ascertain if an individual source is providing 

erroneous data due to misconceptions or purposeful deception.  However, if there are 

multiple sources, all of which are determined to be providing false data, especially if the 

false data is correlated, it might be indicative of an active deception campaign on behalf 

of the dark network organization being targeted. 

2.7.3.4 Examining Informant Accuracy Assumption Four. 

Assumption four states ‘the correlation of knowledge between any two subjects is 

a function of the extent to which each has knowledge of the objective reality.  

Specifically, the correlation of knowledge between individual A and individual B is the 

product of the correlation of individual A with the ‘truth’ and of individual B with the 

‘truth’ (Romney & Weller, 1984, p. 61).”  This assumption is modified when applied to 

assess the individual source accuracy as part of a collection of sources.  Some sources 

may be assumed to be trustworthy in the information they provide, for example, those 

utilizing technical means or a trusted agent.  These trusted sources are used in a vetting 

role for the sources whose reliability is indeterminate.  As such, individual sources are 

not in actuality being compared and correlated with the “truth”, which is unknown, but 

are being compared against the collection of sources whereas trusted sources are held in 

higher regard. 
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Trusted sources are so named by the social network analysts’ ability to discount 

the possibility of deceptive information being intentionally generated by these sources.  

Trusted sources will generally not provide a complete picture of the social network under 

investigation, but will only observe a subset of the interactions among the network’s 

actors.  Technical collection means, for example, may only observe a subset of actor 

interactions, as in the case of wiretapping telephones which are oblivious to face-to-face 

communications that may occur among individuals under suspicion.  Additionally, 

trusted sources are not precluded from providing inaccurate information.  A trusted 

source’s observations may reflect an inaccurate assessment of an interaction in the social 

network.  For example, a trusted agent may observe interactions among actors which are 

purely social, but may be misconstrued as being related to the organization of interest and 

its associated activities. 

A social network analyst may also possess an a priori presumption of reliability 

and accuracy of data provided by trusted sources.  For certain organizations under 

investigation, their detailed knowledge of technical collection means or emplaced agents 

within their organization may be limited.  Operating under this assumption, social 

network analysts may incorporate information provided by trusted agents as reliable and 

accurate.  This assumption may be completely unfounded, particularly if the organization 

under investigation has taken active measures to thwart and disrupt trusted sources’ 

collection means.  Activities, such as providing deceptive information over technical 

communication mediums with the expectation of government interception, could 

invalidate data provided by a trusted source.  Failure to account for the possibility of 
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trusted sources providing unreliable or inaccurate data could corrupt the subsequent 

social network analysis results. 

2.8 Measuring Source Agreement 

Several statistical measures are available to measure the concordance, or 

agreement, of reporting among various social network information sources and 

informants.  Any specific social network data stems from one or more sources of 

information and these sources may corroborate or disagree on the existence of 

relationships among specific actors in the network.  Source comparisons may generate 

insight into the reliability of the provided information as sources in agreement may be 

more likely to provide reliable information and sources providing discordant data may 

indicate of potential erroneous reporting. 

The complete collection of information sources characterize the status of dyads, 

whether existing or null, and ultimately actor inclusion, within the social network under 

investigation.  If multiple sources are reporting the same status on a particular dyad, it is 

reasonable to assume that their agreement is an accurate reflection on the existence of the 

dyad.  If there is disagreement among the reporting sources, it may be difficult to assess 

the presence of the dyad if one cannot trust some or all of the sources.  “The degree of 

agreement among the raters [sources] provides no more than an upper bound on the 

degree of accuracy present in the ratings (Fleiss, Levin, & Paik, 2003, p. 598).”  Thus, 

source agreement is a reflection of the accuracy of the data and an indication of 

individual sources’ reliability. 
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2.8.1 Concordance Among All Sources’ Reporting – Fleiss’ Kappa. 

By considering the entire collection of social network information sources, Fleiss’ 

Kappa, ̂ߢி, can be used to assess the interrater reliability across all of the sources.  Fleiss’ 

Kappa ranges from [0, 1.0], with larger values indicating greater concordance among the 

information sources.  Given a total of I dyads across all sources, it is necessary to 

calculate the number of sources commenting on each dyad i, denoted mi, including 

sources identifying the dyad’s existence or the null relationship.  For each dyad i of the I 

total dyads, the number of sources confirming its existence, xi, is also recorded.  Fleiss’ 

Kappa, Equation (2.36), is then computed based upon the average number of sources 

commenting on each dyad, ഥ݉  and the overall proportion of dyad confirmations, ݌ҧ (Fleiss, 

Levin, & Paik, 2003, pp. 611-612). 

 
ഥ݉ ൌ

∑ ݉௜
ூ
௜ୀଵ

ܫ
 (2.33) 

 
ҧ݌ ൌ

∑ ௜ݔ
ூ
௜ୀଵ

ܫ ഥ݉
 (2.34) 

തݍ  ൌ 1 െ  ҧ (2.35)݌

 

ிߢ̂ ൌ 1 െ
∑ ௜ሺ݉௜ݔ െ ௜ሻݔ

݉௜

ூ
௜ୀଵ

ሺܫ ഥ݉ െ 1ሻ݌ҧݍത
 (2.36) 

A significance test evaluating the null hypothesis that Fleiss’ Kappa is equal to 

zero compares the z statistic obtained from Equation (2.39) against a standard normal 

distribution.  The z statistic divides the value obtained for Fleiss’ Kappa against its 

standard error.  Calculating the standard error involves computing the harmonic mean of 

the number of ratings per subject, ഥ݉ு (Fleiss, Levin, & Paik, 2003, p. 613). 
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2.8.2 Pairwise Comparisons. 

To satisfy source to source pairwise comparisons, confusion matrices are utilized 

in this study.  Though traditionally applied to compare a classifier’s performance against 

a known set of objects, a minor adaptation makes confusion matrices suitable for the 

problem at hand.  The confusion matrix, termed a comparison matrix here, can capture 

the amount of concurrence and disagreement between two sources.  This enables simple 

construction of a comparison matrix by counting the number of agreements of dyad 

existence, cell a in Table II-14, the number of null relationship agreements, cell d in 

Table II-14, and the number of disagreements distinguished by every sources’ selection 

of relationship agreement, cells b and c in Table II-14.  Since the focus of concurrence is 

upon dyads, both nodes composing the dyad must be reported by both sources for 

inclusion into the comparison matrix.  Thus binary vectors for each source can be 

constructed, restricted to only contain dyads in common.  If consistently ordered to 

ensure dyad comparisons across sources, these binary vectors can be compared on an 

element by element basis to construct the comparison matrix. 
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Table II-14 Comparison Matrix for Source Comparison 
Source 2 

Dyad 
Present 

Null 
Relationship 

Source 1 
Dyad Present a b 

Null Relationship c d 
 

 

2.8.3 Binary Similarity Measures. 

Binary similarity measures have been continually introduced since 1884, when 

Sergeant Finley published a tornado forecasting ability with an accuracy greater than 

95%.  Gilbert (1884) responded noting that by always predicting no tornados an accuracy 

of 98.2% can be achieved.  Gilbert introduced two measures, which were soon followed 

by Peirce (1884) and Doolittle (1885) presenting alternative measures (Murphy, 1996, pp. 

3-7).  Since these initial introductions, binary similarity measures have been proposed 

and utilized in a wide range of disciplines, such as weather forecasting, biology, and 

others (Murphy, 1996, p. 3; Choi, Cha, & Tappert, 2010). 

As it is assumed that multiple sources are reporting on the social network under 

investigation, a confusion matrix can be generated for each source pairing.  Evaluating 

every source pairing via cross-examination of each confusion matrix’s elements quickly 

becomes unwieldy, particularly when considering the variance in the quantity of 

information provided by each source.  Fortunately, a variety of binary similarity and 

distance measures have been introduced in the literature to reduce a confusion matrix to a 

single scalar value representing the similarity, or conversely the dissimilarity or distance, 

between the two objects. 
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Due to the widespread applicability of binary similarity and distance measures, 

numerous equations have been introduced.  This plethora of measures has initiated 

debates on their utility, applicability, and interpretation.  Several extensive survey studies 

of these measures exist: Warrens’ dissertation (2008) presented 56 binary similarity 

measures, Choi et al (2010) recently surveyed 76 binary similarity and dissimilarity 

measures, and Eidenberger (2011) listed 75 measures.  This author identified two 

additional measures present in the literature not identified in the survey studies: 

Proportion of Specific Agreement (ignoring d) and Rogot & Goldberg (1966) (Fleiss, 

Levin, & Paik, 2003, pp. 599-602).  Duplication or alternative measure names exist on 

the survey studies, and a comprehensive listing of the measures, alternative names, and 

the associated equations is provided in Table A-1 and Table A-2 in Appendix A.  Even 

synthesizing the lists requires evaluating 105 distinct binary similarity and dissimilarity 

measures to determine the most suitable for the proposed analysis.  Selecting an 

appropriate measure from a large set of binary similarity and dissimilarity measures 

complicates the task of conducting pairwise source comparison to assess source 

reliability; clearly a methodology to select the appropriate measure or set of measures is 

required.  A methodology to accomplish this has been developed and is presented in 

Chapter IV. 

2.8.3.1 Characterizing Binary Similarity/Dissimilarity Measures. 

Binary measures are first distinguished by whether they are attempting to capture 

the degree of similarity among objects.  Choi’s (2010) description of 76 binary measures 

included 17 binary dissimilarity measures.  Of note, several of these dissimilarity 
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measures are directly derived from a corresponding similarity measure.  For example, the 

Yule-Q measure was introduced as a similarity measure with a corresponding 

dissimilarity measure, also referenced as Yule-Q, computed as one minus the similarity 

measure.  Another example, the Gleason similarity measure is one minus the Lance & 

Williams dissimilarity measure.  Of greater complexity, the Hamann similarity measure is 

equivalent to the Sokal & Michener similarity measure minus the Mean Manhattan 

dissimilarity measure.  The Variance dissimilarity measure is equal to one-fourth of 

Mean Manhattan.  These measure pairings are equivalent to each other and will always 

be perfectly positively or negatively correlated.  Therefore, it is only necessary to 

investigate one of the measures in each corresponding pairing for its suitability for a 

given application.  Table II-15 includes identified relationships among the binary 

similarity and dissimilarity measures. 

Additionally, several similarity measures are perfectly correlated due to scale 

changes in their associated equations as illustrated in Table II-15.  The Sokal & Sneath-II 

similarity measure is twice the Gower & Legendre measure, ranging on [0, 1] and [0, 

0.5], respectively.  The Driver & Kroeber similarity measure is half of the Johnson 

measure, ranging on [0, 1] and [0, 2], respectively.  The dissimilarity measures Hellinger 

and Chord are perfectly correlated with Hellinger ranging on [0, 2] and Chord [0, √2].  

The McConnaughey and Kulczyński-II similarity measures range from [-1, 1] and [0, 1], 

respectively.  Since these measures are perfectly correlated, only a single measure in each 

pairing is required in this analysis.  The Sokal & Sneath-II, Driver & Kroeber, Hellinger, 

and McConnaughey measures’ ranges are more suited for analyst interpretation due to 

resemblance with the conventional Pearson’s correlation range of [-1, 1]. 
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Some of the measures presented are known by several names (Choi, 2008). 

Several binary measures distinctly identified by Choi et al (2010) are derived from 

measures that reduce in the binary case to another measure.  The Squared-Euclidean, 

Canberra, City Block, and Minkowksi dissimilarity measures all reduce to the Hamming 

distance in the binary case.  Similarly, the AMPLE similarity measure reduces to the 

Tarantula similarity measure.  Other measures are effectively the same, but introduced in 

the literature in different fields by various authors.  The Gleason, Dice, Sørenson, 

Czekanowski, Nei and Li similarity measures are computed via the same expression.  City 

Block and Manhattan are two common names for the same measure.  The Ochiai-I and 

Otsuka similarity measures are binary versions of Cosine similarity (Choi, 2008, p. 44).  

The Lance & Williams dissimilarity measure is computed by the same equation as the 

Bray & Curtis dissimilarity measure.  The Tanimoto similarity measure reduces to the 

much older Jaccard measure.  Loevinger’s H is algebraically equivalent to the Forbes-II 

measure.  Alternative names for the measures are compiled in Table A-1 and Table A-2 

in Appendix A. 
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Table II-15 Binary Measures Relationships 
Similarity Measures [range] 

(alternative names) 
Correlated Measures [range] 

Obverse Dissimilarity 
Measure [range] 

Negatively Correlated 
Measures [range] 

Gleason 
Dice 
Sørenson 
(Coincidence Index) 
(Quotient Similarity) 
Czekanowski 
Nei & Li 
(Genetic Coefficient) 

 
Lance & Williams  
     =    Bray & Curtis = 1 - Gleason 
 

 

  Hellinger [0, 2] Chord [0, √2] 
Sokal & Michener [0,1] 
(Simple Matching) 

Hamann [-1,1] =  
     Sokal & Michener [0,1] – 
              Mean Manhattan [0,1] 

Mean Manhattan [0,1] 
Variance [0,0.25]  
  =  MeanManhattan/4  
     =  (1- Hamann)/2 

 
 

Size Difference  
      = (Mean Manhattan)2 

 

Yule Q [-1, 1] 
(Coefficient of Association)  

 Yule Q dissimilarity [-1, 1]  

Driver & Kroeber [0, 1] 
Kulczynski-II [0, 1] 

Johnson [0,2] = 2 x Kulczynski-II 
McConnaughey [-1, 1] 

  

Baroni-Urbani & Buser-I [0,1] Baroni-Urbani & Buser-II [-1,1]   
Sokal & Sneath-II [0, 1] Gower & Legendre [0, 0.5]   
Sorgenfrei 
(Correlation Ratio) 

Sorgenfrei = (Ochiai-I)2   
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Several of the binary measures are not scaled and do not possess a theoretical 

limit.  Though useful if the length of the binary vectors is constant across the generated 

confusion matrices, for the source reliability assessment application, conducting 

comparison with varying total number of binary vector lengths, scaleless measures may 

hinder interpretability among sources.  If direct comparisons among measures are 

important for a specific application, several measures can be eliminated from 

consideration.  The lack of scale in several measures can easily be seen from direct 

observation of the equations.  The Intersection, Innerproduct, Koppen (1884), Browsing 

Pattern, and Tversky binary similarity measures and the Euclidean dissimilarity measure 

are clearly not scaled due to the lack of a denominator.  The equivalent Hamming, 

Squared-Euclidean, Canberra, Manhattan, City Block, and Minkowksi dissimilarity 

measures are not scaled as well since they also do not possess a denominator.  The range 

bounds of the collected binary similarity and dissimilarity measures are available in Table 

A-1 and Table A-2 in Appendix A. 

Additional measures are unbounded in range, though this is not readily apparent 

by their equations.  Table II-16 displays binary similarity and dissimilarity measures that 

are unbounded in either their minimum possible value, maximum possible value, or both 

minimum and maximum values.  

Up to this point, binary similarity and dissimilarity measures have been 

eliminated from consideration for this study due to their inherent perfect correlation with 

other identified measures, thus no information is lost by reducing the set of measures 

from 105 to the 96 distinct uncorrelated measures listed in Table II-17.  We now turn our 

attention to what the binary similarity and dissimilarity measures attempt to describe in  
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Table II-16 Unbounded Range Binary Measures 

Unbounded Similarity Measures 

Minimum Value Maximum Value Both 
Fleiss Batagelj & Bren Browsing 
Goodman & Kruskal Tau Clement Eyraud 
  Cole-I Köppen (1870) 

  Cole-III Maron & Kuhns 
  d Specific Agreement Stiles 

  Dennis Stuart's τc 

  Forbes-I Tversky 
  Fossum   
  Gilbert & Wells   
  Harris & Lahey   
  Inner Product   
  Intersection   
  Köppen (1884)   
  Kulczyński-II   
  Pearson-I   
  Sokal & Sneath-III   
  Tarantula   
  Warrens-V   

Unbounded Dissimilarity Measures 

Minimum Value Maximum Value Both 
  Euclidean   
  Hamming   

 
 

comparing binary vectors.  The confusion matrix in Table II-14 displays commonalities 

and disagreements in reporting of the presence or absence of dyads.  The weighting of 

these two states may not be equal.  “[A]symmetric binary variables represent cases where 

the two states are not equally important (Choi, 2008, p. 18).”  As social networks are 

generally described as sparse networks, equally weighting confirmation of present dyads 

with confirmation of null relationships may not be appropriate due to the preponderance 
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of null relationships.  Returning to the confusion matrix, when investigating assumed 

sparse social network source comparison, we naturally expect cell d to be significantly 

larger in number than cell a.  As a result, a source reporting large numbers of null 

relationships probably scores well under measures that consider negative matches, i.e. 

null relationships, in their calculations.  The weighting of cells a and d varies 

substantially across the measures dependent upon the specifics of their associated 

equations.  The question remains, which measures, considering the variability in the 

weighting mechanisms, are suitable for the application at hand--measuring social network 

source agreement.  A methodology is demonstrated in Chapter IV that aids analysts 

attempting to answer that question. 
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Table II-17 Reduced Set of Binary Similarity and Dissimilarity Measures 

Binary Similarity Measures 

Anderberg Goodman & Kruskal Lambda Pearson-I 
Anderberg's D Goodman & Kruskal Tau Pearson-II 
Baroni-Urbani & Buser-II Goodman & Kruskal Max Pearson-III 
Batagelj & Bren Goodman & Kruskal Min Phi Coefficient 
Benini Goodman & Kruskal Prob Peirce-I 
Braun-Blanquet Gower Peirce-II 
Browsing Hamann Peirce-III 
Clement Harris & Lahey Relative Decrease of Error Probability 

Cohen's Kappa Hawkins & Dotson Rogers & Tanimoto 
Cole-I Inner Product Rogot & Goldberg 
Cole-II Intersection Russell & Rao 
Cole-III Jaccard Scott 
Cosine Jaccard-3W Simpson 
Dennis Kent & Foster-I SokalSneath-I 
Dice-I Kent & Foster-II SokalSneath-II 
Dice-II Koppen 1870 SokalSneath-III 
Digby Koppen 1884 SokalSneath-IV 
Dispersion Kuder& Richardson SokalSneath-V 
Doolittle Kuhn Sorgefrei 
d Specific Agreement Kuhn Proportion Stiles 
Eyraud Kulczyński-I Tarantula 
Fager & McGowan Kulczyński-II Tarwid 
Faith Loevinger's H Tversky 
Fleiss Maron & Kuhns Warrens-I 
Forbes-I Maxwell & Pilliner Warrens-II 
Fossum McConnaughey Warrens-III 
Gilbert Michael Warrens-IV 
Gilbert & Wells Mountford Warrens-V 
Gini Pearson & Heron-I Yule Q 
Modified Gini Pearson & Heron-II Yule W 

Binary Dissimilarity Measures 
Euclid Hellinger ShapeDifference 
Hamming PatternDifference SizeDifference 
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2.9 Classifier Performance 

The objective of this research is to provide a methodology to distinguish between 

reliable and unreliable information sources when constructing a social network model.  

The test the methodology’s effectiveness a method of evaluating classification 

performance is required. 

2.9.1 Response Operating Characteristics (ROC) Graph. 

A Response Operating Characteristics (ROC) Graph provides a method to 

examine a classifier’s performance and conduct comparisons among classifiers.  A 

classifier when examining an object that can be one of two classes produces four possible 

outcomes: a true positive, a false positive, a true negative, or a false negative (Fawcett, 

2006, p. 862).  In this experimentation, a true positive denotes the methodology correctly 

identifying a reliable source for inclusion into the social network model.  A true negative 

indicates the methodology correctly discarding an unreliable source from the social 

network model.  False positives and false negatives occur when the methodology 

incorporates an unreliable source into the social network model and discards a reliable 

source, respectively.  Arranging the total number of true/false positives and true/false 

negatives into a matrix gives the standard confusion matrix, also referred to as a 

contingency table, as displayed in Table II-18 (Fawcett, 2006, p. 862). 

 



www.manaraa.com

 

II-102 

 

Table II-18 Confusion Matrix 
True Class 

Class 1 Class 2 

Classifier 
Assessment 

Class 1
True 

Positives 
False 

Positives 

Class 2
False 

Negatives 
True 

Negatives 
 

 

2.9.1.1 Confusion Matrix Metrics. 

There are several commonly used metrics that can be obtained from the confusion 

matrix.  The true positive rate, also referenced as the hit rate, recall or sensitivity, is 

defined by Equation (2.40).  The analogous false positive rate, also referenced as the false 

alarm rate, is detailed in Equation (2.41) (Fawcett, 2006, p. 862). 

 
True Positive Rate ൌ

True Positives
True Positives ൅ False Negatives

 (2.40) 

 
False Positive Rate ൌ

False Positives
False Positives ൅ True Negatives

 (2.41) 

 
The ROC graph can be constructed by plotting the true positive rate on the y-axis 

and the false positive rate on the x-axis.  “An [sic] ROC graph depicts relative tradeoffs 

between benefits (true positives) and costs (false positives) (Fawcett, 2006, p. 862).”  The 

ROC graph can be constructed from plotting points of the classifier’s performance as the 

classifier’s threshold is varied.  As the threshold is monotonically increased, a curve will 

be displayed on the ROC graph as shown in Figure II-10 (Fawcett, 2006, p. 863). 
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Figure II-10 ROC Graph Example 

 
 

2.9.1.2 Area Under the Curve (AUC). 

The area underneath the ROC curve is a commonly used summary statistic to 

compare classification accuracy.  The AUC ranges from [0, 1.0] with a larger value 

indicating better classification performance.  However, random guessing would generate 

an AUC equal to 0.5, so in practice, classifiers should at a minimum exceed this 

threshold.  This appears as a diagonal line from the origin to (1,1) on the ROC curve.  

The AUC “is equivalent to the probability that the classifier will rank a randomly chosen 

positive instance higher than a randomly chose negative instance (Fawcett, 2006, p. 

868).”  For comparison, the AUC for the ROC curve in Figure II-10 is 0.883. 
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2.9.1.3 ROC Graph Properties. 

ROC graphs are insensitive to imbalances among the probability of occurrence 

between classes.  If a great disparity in the frequency of occurrence is present, the ROC 

graph is unaffected as it is based on the true positive and false positive rates.  These rates 

are indifferent to number of objects in each class (Fawcett, 2006, p. 864).  Real world 

social network information sources are presumed to present disparity in the number of 

reliable and unreliable sources.  Ideal situations would have greater numbers of reliable 

sources with only a few unreliable sources reporting. 

2.9.1.4 Additional Confusion Matrix Metrics. 

Additional commonly referenced confusion matrix metrics include: precision, 

accuracy, specificity, and F-measure.  Precision, also referenced as positive predictive 

value, is defined in Equation (2.42).  Accuracy is presented in Equation (2.43).  

Specificity is one minus the false positive rate.  The F-measure, Equation (2.44), 

incorporates the precision and recall metrics (Fawcett, 2006, p. 862). 

 
Precision ൌ

True Positives
True Positives ൅ False Positives

 (2.42) 

 Accuracy

ൌ
True Positives ൅ True Negatives

True Positives ൅ False Positives ൅ False Positives ൅ True Negatives
 

(2.43) 

 
F‐measure ൌ

2

൫1 Precisionൗ ൯ ൅ ቀ1 Recallൗ ቁ
 (2.44) 

2.10 Statistical Analysis Techniques 

Several statistical analysis techniques are utilized in this research to examine the 

proposed methodology’s performance.  The design of experiment is discussed in Section 



www.manaraa.com

 

II-105 

 

3.3.  Traditional ordinary least squares (OLS) regression is applied in the analysis, but as 

is discussed in Section 5.7, additional statistical techniques are required due to violations 

of OLS assumptions.  This section overviews some statistical techniques that are 

employed to address issues present with applying OLS on these data sets. 

2.10.1 Analysis of Covariance (ANCOVA). 

Analysis of Covariance (ANCOVA) is a statistical technique that has the potential 

for reducing large error variances (Neter, Wasserman, & Kutner, 1985, p. 845.).  The 

high variability structural characteristics of the randomly generated graphs may account 

for some of the error variances in the model.  These structural characteristics cannot be 

controlled in the random graph generation, but they can be observed using traditional 

SNA network measures.  These covariate or concomitant variables may inflate the mean 

square error and mask treatment effects.  By accounting for these structural 

characteristics, the resultant model will address the uncontrollable nuisance variables 

associated with individual graph characteristics (Montgomery, 2005, p. 575). 

ANCOVA models the experimental factors, the covariates, and, if desired, the 

interaction terms among the experimental factors, the covariates, and interactions 

between the experimental factors and covariates.  In this experimentation, the full 

factorial design, coupled with the center point runs, the runs from the space filling design 

and ten replications of each design point, will ensure there are sufficient degrees of 

freedom are available to conduct an ANCOVA with all interaction terms present in the 

model.  There is justification for investigating such a complicated model: 

Leaving interaction effects involving covariates out of the model may 
result in biased estimates of the factor effect.  Therefore, whenever the 
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number of experimental runs is sufficiently large, we recommend 
verifying whether these interaction effects are significantly different from 
zero, even when they are not of primary interest.  (Goos & Jones, 2011, p. 
207)   

The ANCOVA model with up to two variable interactions, Equation (2.45), with 

response vector Y, m experimental factors denoted x1 through xm, c covariate variables 

denoted z1 through zc can be solved for the intercept, β0, experimental factor main effects, 

β0 through βm and factor interaction coefficients, βij, covariate main effects, γ1 through γc, 

covariate interaction coefficients, γij, and factor covariate interaction coefficients, ߚ௜௝
ா஼ 

(Goos & Jones, 2011, p. 207).  
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2.10.2 Ordinary Least Squares Regression Error Term Assumptions. 

Ordinary Least Squares (OLS) regression assumes that the error terms of a linear 

regression model are independently normally distributed with a mean of zero and the 

error distribution is homoskedastic (Kmenta, 1971, p. 348).  However, since this 

experimentation data set is based on graphs these assumptions may prove to be invalid.  

Several statistical techniques are available to test the validity of these assumptions on an 

OLS model and attempt to rectify deficiencies. 

Of particular interest in this experimentation is the normally distributed error 

terms assumption.  Empirical observations of some social network measures’ 

distributions do not follow normal distributions.  Barabási and Bonabeau (2003, pp. 63-
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64) note that the degree distribution of networks appear to follow a power-law 

distribution.  As such, it can be anticipated that other network characteristics or social 

network algorithms possess non-normal distributions as well.  Quantile regression is 

conceptually similar to OLS, but possesses different assumptions regarding the error 

terms distribution and is an alternative statistical technique when OLS’ assumptions are 

not met. 

Empirical SNA models have been found to possess certain characteristics, such as 

clustering, degree correlation, and power-law degree distributions (Newman & Park, 

2003, pp. 036122:2-4; Barabási & Bonabeau, 2003, pp. 63-64).  Even the classic random 

network model of Erdös and Rényi (1959) produced degree distributions following a 

binomial distribution, a Poisson distribution in the limit as the number of nodes 

approaches infinity.  Noticeably absent within the networks’ literature is the regular 

appearance of the normal distribution. 

The recent ascendance of network science has brought forth discoveries of the 

appearance of scale-free distributions and inequalities among network significance of 

nodes and edges.  As such, one must consider the assumptions of traditional statistical 

techniques when applying them to network models.  Notably, the normality assumption 

of the error terms is prominent in ANOVA, ANCOVA, and linear regression, which are 

traditional analysis techniques used in Design of Experiments (DOE).  Another 

assumption on the error term’s distribution in OLS is homoskedasticity.  However, in the 

presence of heteroskedasticity, confidence intervals cannot be placed on the regressor 

coefficients and testing coefficient significance is inappropriate (Kmenta, 1971, p. 255). 
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2.10.3 Quantile Regression Overview. 

Least squares linear regression models the conditional mean response of the 

dependent variable for given values of the independent variables.  However, if one wants 

to investigate the effects of variables on the response’s distribution of values, techniques 

based on the generalized linear model are not sufficient.  Understanding how network 

parameters and characteristics affect a response variable necessitates utilizing techniques 

that evaluate the full distribution of the dependent variable as opposed to only 

investigating mean responses. 

Quantile regression is a semi-parametric linear regression model extension that 

models the dependent variable’s quantile response, as opposed to the mean response, 

conditioned on independent variables (Cade & Noon, 2003, p. 414).  The parametric 

portion of the model involves the independent variables and their associated regression 

coefficients, as in least squares linear regression, with the regression coefficients being 

interpreted as rates of change in the dependent variable.  One advantage that lends this 

technique to network analysis includes that the model’s non-parametric error terms are 

not assumed to follow a specified parametric distributional form, such as the normal 

distribution in linear regression (Cade & Noon, 2003, p. 414). 

Quantile regression enables a linear model to be calculated for any desired 

quantile, allowing a characterization of the dependent variable’s response at the tails of 

its distribution conditioned on modeled independent variables (Cade & Noon, 2003, p. 

414).  Thus, by computing quantile regression hyperplanes for a series of quantiles, an 

estimate of the response variable’s conditional distribution can be constructed (Koenker, 

2005, p. 16).  Additionally, due to the ordering nature of quantiles, the regression quantile 
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model maintains its statistical properties under any linear or nonlinear monotonic 

transformation of the dependent variable (Cade & Noon, 2003, pp. 414-415). 

Figure II-11 displays a comparison of ordinary least squares (OLS) and quantile 

regression of food expenditure by household income.  The data is “based on 235 budget 

surveys of the 19th century working-class households (Koenker, 2005, p. 78).”  As can be 

observed in Figure II-11, the OLS of the mean generates a distinctly different regression 

line than the quantile regression of the median.  Additionally, Figure II-11 displays how 

conducting quantile regression for multiple quantiles assists in understanding the impact 

of hetereoscedasticity. 

 

 
Figure II-11 OLS and Quantile Regression Comparison (Koenker, 2011) 
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The following description of the mechanics of quantile regression is based on two 

primary sources: Koenker’s Quantile Regression book (Koenker, 2005), and a series 

publication on quantile regression (Hao & Naiman, 2007).  The following sections 

generally follow the description, mathematical properties, and assumptions discussion of 

quantile regression as presented by Koenker (2005) and Hao and Naiman (2007). 

2.10.4 Quantile Regression Mathematical Underpinnings. 

Quantile regression is based upon an optimization problem.  The objective is to 

minimize an expected piecewise linear loss function, given by Equation (2.46), for a 

specified quantile, ߬ א ሺ0,1ሻ, with indicator function I (Koenker, 2005, p. 5). 

ሻݑఛሺߩ  ൌ ൫߬ݑ െ ݑሺܫ ൏ 0ሻ൯ (2.46) 

Analogous to linear regression, the objective is to minimize an aggregation of a 

difference function between the observed responses and the predicted responses.  Linear 

regression minimizes the sum of squared differences between these quantities.  Quantile 

regression uses the loss function of Equation (2.46) to minimize the weighted differences 

between observed and predicted response, Equation (2.47) (Koenker, 2005, p. 10).  

Equation (2.47) is piecewise linear and continuous.  It is differentiable everywhere except 

the points when ݕ௜ െ ௜ݔ
ߚ் ൌ 0 (Koenker, 2005, p. 32). 

 
min
ఉאԹ೛

෍ߩఛሺݕ௜ െ ௜ݔ
ሻߚ்

௡

௜ୀଵ

 (2.47) 

Equation (2.47) can be reformulated as a linear program, Equation (2.48), by 

decomposing the residuals, into positive and negative slack variables, u and v.  X is the 

standard design matrix as in traditional linear regression (Koenker, 2005, p. 10). 
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 min
ሺఉ,௨,௩ሻאԹ೛ൈԹశ

మ೙
ሼ߬1௡்ݑ ൅ ሺ1 െ ߬ሻ1௡்ݒ ߚܺ| ൅ ݑ െ ݒ ൌ  ሽ (2.48)ݕ

2.10.4.1 Coefficients’ Standard Errors and Confidence Intervals. 

Confidence intervals and standard errors for estimated coefficients in a quantile 

regression model can be computed via asymptotic calculations which assume errors are 

identically and independently distributed.  Alternatively, it is common practice to 

estimate the coefficients’ standard deviations and confidence intervals via a bootstrap 

method.  The bootstrap method draws samples of size n with replacement from the data 

set.  The quantile regression coefficients are computed for the selected sample and a new 

sample is generated.  Estimates of each coefficient’s distribution are then calculated.  The 

coefficients’ distributions derived from the bootstrap method can be assessed by 

assuming a normal distribution and evaluating the means and standard deviations, or by 

analyzing the distributions’ quantiles (Hao & Naiman, 2007, pp. 47-49; Koenker, 2005, 

pp. 105-107). 

An example of the visualization of the quantile regression coefficients is provided 

in Figure II-12 for seven covariates and the intercept.  The data involves a response 

variable of the birth weight of 198,377 babies, with fifteen covariates recorded, such as 

mother demographic data and health factors.  The OLS regression coefficients are 

presented as dotted lines along with their 95% confidence intervals.  As can be seen in 

Figure II-12, the coefficients vary by quantile, which indicates the effects of these 

covariates are not constant across the conditional distribution of the response variable.  

Confidence intervals on the quantile regression coefficients are computed via a bootstrap 

method.  Quantile regression coefficients which appear constant across the range of 
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quantiles, indicate a pure location shift in the response variable due to the covariate.  

Non-constant coefficients indicate scale or shape changes in the response variable’s 

conditional distribution due to the covariate (Koenker & Hallock, 2001, pp. 148-151). 

 

 
Figure II-12 Covariate Coefficient Comparison (Koenker & Hallock, 2001, p. 150) 

 
 

2.10.5 Quantile Regression Properties. 

Quantile regression possesses several properties that distinguish it from OLS 

regression.  This subsection describes several properties that are relevant to the analysis 

conducted in Section 5.8. 
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2.10.5.1 Quantile and Mean Robustness. 

The mean of a data set is susceptible to large outliers.  The median or any 

quantile, on the other hand, is relatively robust to the presence of outliers.  The quantile’s 

value is only affected if a data point is perturbed enough to cross the quantile.  In linear 

regression, which computes the conditional mean, an extreme outlier can alter the entire 

mean regression hyperplane.  In quantile regression, the quantile hyperplane is only 

altered if the extreme outlier crosses the quantile hyperplane.  Thus, if a median 

regression hyperplane is computed, changes to a data point only affects the regression 

equation if it changes the data point’s position from above to below, or vice versa 

(Koenker, 2005, p. 11; Hao & Naiman, 2007, pp. 41-42). 

2.10.5.2 Equivariance to Monotone Transformations. 

Quantiles possesses a property referred to as equivariance to monotone 

transformations, which if given a variable Y, ݄ሺ·ሻ is a nondecreasing function on Թ, the 

quantiles, ܳሺ·ሻ, of the transformed variable  are equal to the transform of the variable’s 

quantiles, ܳ൫݄ሺܻሻ൯ ൌ ݄ሺܳሺܻሻሻ.  The mean does not possess this property, but in linear 

regression a commonly applied technique if analysis of the residuals indicates 

hetereoscedasticity or non-normality is to transform the dependent variable 

(Montgomery, Peck, & Vining, 2006, pp. 160-161).  The transformation is intended to 

correct the hetereoscedasticity and non-normality, while maintaining the response 

variable as linearly dependent on the covariates.  Thus, transformations in quantile 

regression are subject to greater interpretability (Koenker, 2005, p. 39; Hao & Naiman, 

2007, pp. 38-41). 
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2.10.5.3 Quantile Crossing. 

Quantile regression allows one to independently construct quantile hyperplanes 

for any set of given quantiles.  As each one is derived from an independent optimization 

to calculate the regression coefficients, it is possible to produce a set of quantile 

hyperplanes that cross.  As this is inconsistent with the definition of quantiles and their 

monotonicity, methods are available to ensure generation of monotonic quantile 

hyperplanes, but in practice, it is recommended to perform quantile regression and use 

quantile hyperplane crossing as a potential indicator of model misspecification (Koenker, 

2005, pp. 55-59).  Figure II-13 shows an example of quantile crossing on data consisting 

of glacier lily seedlings with the number of flowers observed as an independent variable 

(Koenker, 2005, p. 54). 

 

 
Figure II-13 Example of Quantile Crossing (Koenker, 2005, p. 55) 

 
 



www.manaraa.com

 

II-115 

 

2.10.6 Location and Scale Shifts. 

Traditional linear regression can detect location shifts of a response variable’s 

distribution conditioned upon the independent variables.  However, it assumes that the 

covariates affect the response variable only via a location shift in the response conditional 

distribution and that there are no effects impacting the distribution’s scale or shape (Hao 

& Naiman, 2007, p. 57).  Linear regression cannot detect scale changes in the response 

variable if the scale change does not affect the conditioned distribution’s mean, unless 

replications in the design matrix, X, allow for variance computations.  Additionally, linear 

regression may or may not detect location and scale shifts in the conditioned distribution. 

Quantile regression can detect location shifts by examining the independent 

variables’ impact upon the response variable’s median, if central tendencies are of 

interest, or other quantiles if investigating the response variable’s distribution’s tail 

behavior.  Scale changes in the response variable’s conditioned distribution can be 

detected by quantile regression by generating several quantile regressions and estimating 

an interquantile range conditioned on X.  By estimating the conditioned distribution’s 

central location changes, coupled with scale change detection, location and scale changes 

of the response variable’s distribution due to effects from the independent variables can 

be measured (Hao & Naiman, 2007, pp. 7-8). 

To measure location shift, the median is analogous to the mean used in traditional 

linear regression (Hao & Naiman, 2007, pp. 12-13).  However, if one is interested in 

location shifts in the tails of the distribution, any quantile could be used.  For scale 

changes, linear regression uses the standard deviation.  For symmetric distributions, such 

as the normal distribution, the standard deviation possesses a straightforward 
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interpretation.  For asymmetric distributions, such as heavy-tailed distributions, the 

interpretation of the standard deviation is more difficult.  To measure scale changes in 

quantile regression, an interquantile range, termed quantile-based scale measure (QSC), 

for a selected quantile τ, with value Q(τ), as given in Equation (2.49) can be used (Hao & 

Naiman, 2007, pp. 12-13). 

ሺఛሻܥܵܳ  ൌ ܳሺଵିఛሻ െ ܳሺఛሻ for ݌ ൏ 0.5 (2.49) 

Another aspect of a distribution’s shape is skewness.  With symmetric 

distributions, the skewness is zero.  “A negative value indicates left skewness and a 

positive value indicates right skewness.  Skewness can be interpreted as saying that there 

is an imbalance between the spread below and above the median (Hao & Naiman, 2007, 

p. 13).”  Within quantile regression, a quantile-based skewness measure (QSK), can be 

defined as the ratio of the upper spread against the lower spread, as depicted in Equation 

(2.50).  The QSK for a symmetric distribution is zero, is negative for left-skewed 

distributions and positive for right-skewed distributions (Hao & Naiman, 2007, pp. 13-

14). 

ሺఛሻܭܵܳ  ൌ ொሺభషഓሻିொሺబ.ఱሻ

ொሺబ.ఱሻିொሺഓሻ
െ 1 for ݌ ൏ 0.5 (2.50) 

2.10.6.1 Wald Statistic. 

If the variance and covariances of a quantile regression model’s coefficients are 

available, such as being estimated via the bootstrap method, the Wald statistic can be 

used to test whether multiple coefficients are equal across various quantiles.  They can be 

applied to the interquantile ranges of multiple samples.  “Thus, they may be considered to 

be tests of homogeneity of scale or tests for heteroscedasticity (Koenker, 2005, p. 75).”  
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The simpler comparison of a pair of coefficients, testing the null hypothesis ߚଵ
ሺ௣ሻ ൌ ଵߚ

ሺ௤ሻ 

for quantiles, p and q respectively, can be accomplished with the Wald statistic, which 

has an approximate χ2 distribution with one degree of freedom.  The test can be 

performed on quantile regression coefficients according to Equation (2.51), with the 

variance estimated by Equation (2.52).  Multiple comparisons are accomplished via a 

covariance matrix (Hao & Naiman, 2007, pp. 49-50). 

 

Wald Statistic ൌ
ቀߚመ௜

ሺ௣ሻ െ መ௜ߚ
ሺ௤ሻቁ

ଶ

ොߪ
ఉ෡೔
ሺ೛ሻିఉ෡೔

ሺ೜ሻ
ଶ  (2.51) 

 
ఉ෡೔
ሺ೜ሻ ൌ መ௜ߚቀݎܸܽ

ሺ௣ሻ െ መ௜ߚ
ሺ௤ሻቁ

ൌ መ௜ߚቀݎܸܽ 
ሺ௣ሻቁ ൅ መ௜ߚቀݎܸܽ

ሺ௤ሻቁ െ መ௜ߚቀݒ݋ܥ2
ሺ௣ሻ, መ௜ߚ

ሺ௤ሻቁ 
(2.52) 

2.10.7 Quantile Regression Model Goodness of Fit. 

R2 is a typical measure of goodness of fit for linear regression models.  For 

quantile regression, an analog to R2, a pseudo-R2 is available.  Psuedo-R2 is restricted to 

[0, 1], similarly as R2.  However, psuedo-R2 is a comparison between a model with 

covariates and a model only containing an intercept and does not reflect the proportion of 

variance explained.  Quantile regression minimizes a weighted sum of the difference 

between the data points and the quantile regression hyperplane.  Quantile regression’s 

pseudo-R2, R(τ), is the sum of the weighted differences of the quantile regression model, 

ܸଵሺ߬ሻ, compared against the sum of the weighted differences of a quantile regression 

model containing only an intercept, ܸ଴ሺ߬ሻ.  The sum of the weighted differences for a ߬th 

quantile regression model with dependent variable y and independent variables X in 
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standard design matrix form is described in Equation (2.53) (Hao & Naiman, 2007, p. 51; 

Koenker & Machado, 1999, p. 1297). 

ܸଵሺ߬ሻ ൌ ෍ ߬หݕ௜ െ ሺఛሻߚ ௜ܺห
௜|௬೔ஹఉሺഓሻ௑೔

൅ ෍ ሺ1 െ ߬ሻหݕ௜ െ ሺఛሻߚ ௜ܺห
௜|௬೔ழఉሺഓሻ௑೔

 (2.53) 

The sum of the weighted differences for a ߬th quantile regression model 

containing only an intercept term, with quantile estimates ෠ܳ ሺఛሻ, is defined in Equation 

(2.54) (Hao & Naiman, 2007, pp. 51-52). 

 ܸ଴ሺ߬ሻ ൌ ෍ ߬หݕ௜ െ ෠ܳሺఛሻห
௜|௬೔ஹொ෠ሺഓሻ

൅ ෍ ሺ1 െ ߬ሻหݕ௜ െ ෠ܳሺఛሻห
௜|௬೔ழொ෠ሺഓሻ

 (2.54) 

Thus, a ߬th quantile regression’s pseudo-R2, R(߬), is defined in Equation (2.55) 

(Hao & Naiman, 2007, p. 52). 

 
ܴሺ߬ሻ ൌ 1 െ

ܸଵሺ߬ሻ
ܸ଴ሺ߬ሻ

 (2.55) 

R(߬) can be used to compare two nested quantile regression models, coined 

relative R(߬) in the literature.  If ܸଶሺ߬ሻ is more restricted than quantile regression model, 

ܸଵሺ߬ሻ, which possess all of the covariates denoted in ܸଶሺ߬ሻ, then relative R(߬) is given 

by Equation (2.56) (Hao & Naiman, 2007, p. 52). 

 
ܴሺ߬ሻ ൌ 1 െ

ܸଶሺ߬ሻ
ܸଵሺ߬ሻ

 (2.56) 

As R(߬) and relative R(߬) are functions of quantile ߬, comparisons between 

models can be accomplished across the entire conditional distribution by sampling 

various quantiles and examining which model possess better performance in regions of 

interest (Hao & Naiman, 2007, pp. 52-54). 
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2.11 Chapter Summary 

This chapter provided a summary overview of Social Network Analysis, 

definitions of measures used in relevant research, germane modeling aspects and 

considerations, and an overview of experimental studies investigating imperfect data in 

SNA.  Evidenced in the contradictory nature of the findings derived from the 

experimental studies, the impact of imperfect data upon SNA results is not completely 

understood by the academic community or practitioners.  Furthermore, no guidelines are 

available indicating when SNA is an appropriate technique for a given data set.  

Additionally, imperfect data mitigation techniques, such as imputation, exist but are 

presented without guidance on the applicability or necessity for a given problem and its 

associated data set. 

Limitations with consensus structure aggregation and Butt’s Bayesian approach, 

the discussed SNA methods dealing with social network model construction in the face of 

unreliable sources, were identified.  The next chapter will present an overview of a 

methodology that alleviates these shortcomings.  This methodology utilizes the statistical 

methods reviewed here to measure source agreement in reporting.  Additionally, an 

experimental design examining factors affecting classifier performance is presented to 

test the methodology.  Chapter V employs the statistical analysis techniques overviewed 

in this chapter to analyze the experimentation results. 



www.manaraa.com

 

III-1 

 

III. Methodology Overview and Experimental Design 

SNA analysts are attempting to construct a model of a true underlying social 

network.  The social sciences have various data collection means which were overviewed 

in Section 2.3.2.  When constructing social network models of dark or clandestine 

networks, information is acquired through intelligence collection means and reported.  

Regardless of how the data is obtained, it generally is derived from multiple information 

sources of indeterminate reliability.  These information sources’ reporting are aggregated 

into a social network model.  This resultant aggregate social network model in all 

likelihood will contain correct and incorrect information, and will additionally be missing 

information as overviewed in Figure III-1.  The problem at hand is to assess sources’ 

reliability when constructing the social network model to discount information being 

provided by unreliable sources. 

This chapter provides an overview of the methodology used to compare sources’ 

reports and to subsequently assess source reliability.  To examine the effectiveness of this 

proposed methodology, an experimental design is detailed to test the methodology’s 

performance across a variety of conditions faced by SNA analysts in practice.  Due to a 

lack of available real world data, generation of artificial social network information 

sources is described for use in the experimental testing. 
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Figure III-1 Graphical Representation of Problem 

 
 

3.1 Methodology Overview 

This section provides an overview of the methodology developed in this research.  

The components of the methodology are described in general aspects, while details of the 

components are provided in Chapters IV and V. 

3.1.1 Comparing Sources’ Reporting. 

Social network information sources proved reports on the existence and status of 

relationships among actors within the social network under investigation.  These reports 

can prove to be conflicting or confirming with other source reporting.  Lacking in the 

SNA literature is a systematic method of examining source reporting to ascertain whether 
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it is confirmed by other sources or there is dissention.  Information sources may be in 

agreement, concordance; or they may counter other sources’ reporting, discordance. 

The basic data element provided by information sources is dyad reporting, the 

reporting of a relationship between two actors in the social network.  Information sources 

provide statements of existing relationships between actors in the social network.  

Simultaneously, directly or indirectly, information sources are reporting null relationships 

between actors.  Comparisons can be conducted among sources that are reporting on 

identical dyads with methods such as consensus structure aggregation as described in 

Section 2.5.  As it is likely that sources are reporting on dyads of which only a subset are 

common with another information source, methods that can account for partially 

overlapping reporting are required. 

Utilizing the reported dyads for each source and noting confirmation and 

dissentions, sources can be assessed for the amount of similarity.  This similarity 

assessment can consider all of the sources as a collection, using a measure such as Fleiss’ 

Kappa, as presented in Section 2.8.1.  Conversely, the sources can be examined on a 

pairwise basis, with each source assessed for its similarity with every other individual 

source. 

The approach developed in this research quantitatively assesses the sources based 

on the similarity of their reporting.  However, it requires a measure of similarity between 

sources.  As sources are either explicitly or implicitly reporting the presence or non-

presence of a dyad, a source can be represented as a binary vector with each element 

representing a specific dyad as presented in Section 2.8.2.  Two information sources can 

then be compared by examining the dyads they have in common and using a binary 
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similarity measure as described in Section 2.8.3.  This will produce a set of pairwise 

source similarity scores from the social network information sources by examining 

confirmations and dissentions among the reported dyads and null relationships.  This is 

represented in Figure III-2. 

 

 
Figure III-2 Source Similarity Scores Generation 

 
 

However, the problem remains of selecting an appropriate binary similarity 

measure from the 105 documented available measures as listed in Table A-1 in Appendix 

A.  Chapter IV details the methodology component for selecting an appropriate binary 

similarity measure to use for pairwise source comparisons to produce source similarity 

scores. 
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3.1.2 Sources’ Network Perspective. 

Social network information sources provide reporting which reflects their 

knowledge of the underlying social network.  Each information source, in effect, provides 

their representation of the social network model.  These reported social network models 

may be artifacts of the sources’ perspective of the network.  If a source is a member of a 

social network, they may only be aware of the relationships of which they are a 

participant.  It is also possible they may be aware of other members’ relationships due to 

the prominence of the actors involved. 

If information sources are reporting on different aspects of the underlying social 

network, the sources will not possess many dyads in common and thus it will be difficult 

to confirm or contradict dyads.  Conversely, if information sources are reporting on 

similar aspects of the social network, the expectation is that there will be many dyads in 

common on which confirmation and dissentions can be determined.  The number of 

dyads in common that sources are reporting on reflects the importance of the similarity 

between the sources.  If two sources are commenting on the same aspect of the network, 

and possess high levels of dissention, that is a probable indication that at least one of the 

sources is unreliable.  If two sources are reporting on the same aspect of the network and 

possess high levels of agreement, the reporting confirmation increases the likelihood that 

the sources are reliable. 

If information sources are reporting on different aspects of the network, i.e. they 

do not possess many actors in common, there is no expectation that the sources’ should 

be concordant.  If two sources are reporting on different aspects of the network, they 

should not be penalized or rewarded in terms of their reliability assessment based on the 
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information obtained from that source pairing.  Thus, the source pairings should be 

weighted according to their perspective of the underlying social network.  Sources 

reporting on the same aspects of the social network, share a similar perspective and their 

similarity score should accordingly be weighted higher than sources that are providing 

information on different parts of the network.  The methodology component of weighting 

source pairings by their network perspective will be discussed in detail in Section 5.1.2. 

At this point, the reporting obtained from all information sources has been 

distilled by pairwise source comparisons into: a set of source similarity scores which 

measures the similarity, in terms of confirming and dissenting dyads and null 

relationships between each pair of sources; and a set of source pair weightings, which 

reflect the varying network perspectives of each of the information sources.  Figure III-3 

displays the methodology as described through this section. 

3.1.3 Assessing Sources. 

Once source similarity scores and their associated weightings have been obtained, 

the objective is to group information sources to begin ascertaining whether they are 

reliable or unreliable.  Sources that report dyads and null relationships that are being 

confirmed are more likely to be reliable, while sources whose information is discordant 

with other sources’ reporting are more likely to be unreliable all other factors being 

equal.  With large, or possibly even moderate, number of sources, the majority of sources 

may have reported relationships that have been discredited by at least one other source.  

This will be reflected in the similarity scores, with sources potentially exhibiting high 
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similarity with some sources while simultaneously possessing low similarity scores with 

other sources. 

 

 
Figure III-3 Pairwise Source Comparisons Methodology 

 
 

Incorporating the score weightings representing every sources’ network 

perspective, adds further complexity.  This multidimensional data composed of pairwise 

similarity scores and associated pairwise score weightings represents sources’ 

concordance and the sources’ individual perspective of the underlying social network.  

The objective at this phase of the methodology is to group sources by clustering together 

those who are concordant and share similar network perspectives, while separating the 

sources that are discordant.  Information sources, providing unique information as a 

function of the network perspective, are unable to be assessed for reliability as there is no 
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relevant information to confirm or discredit their reporting.  A detailed explanation of the 

methodology component of grouping sources into clusters is provided in Chapter V, 

along with analysis of the methodology’s performance in the experimentation that will be 

discussed in Section 3.3. 

Sources are clustered according to their concordance via weighted 

multidimensional scaling and fuzzy clustering techniques presented in described in 

Chapter V.  The resultant cluster of sources will group sources providing confirmed 

information together.  Sources that are providing confirmed information are presumed to 

have an increased likelihood of reliability than those sources whose reports have been 

discredited.  Figure III-4 displays the methodology of conducting pairwise source 

comparisons to determine source concordance while accounting for the sources’ network 

perspective.  This leads to grouping the sources to determine their likelihood of 

reliability. 

3.1.4 Methodology Practical Application. 

The methodology presented in this research is an analyst aid and not an 

authoritative discriminator or confirmer of source reliability.  The methodology utilizes 

only the sources’ reports and does not consider a priori information concerning the 

sources or any known information regarding the underlying social network’s structure.  

Additionally, the methodology groups sources based on confirmations and dissentions of 

their reporting.  It is conceivable that several sources are providing information that each 

confirms and there is a single lone source whose information is contradictory, yet the 
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single source is providing the best representation of the underlying social network while 

the several sources are unreliable. 

 

 
Figure III-4 Overall Methodology Framework 

 
 

3.2 Experimentation Data 

In order to examine the methodology’s performance, experimentation needs to be 

conducted.  Ideally, the experimentation would be conducted on a collection of real world 

dark network data sets, each composed of the independent information sources’ reporting 

used to generate the model and the discarded information deemed not suitable for model 

inclusion.  These real world dark network data sets would need to vary enough to account 

for differences in network structures and graph characteristics to represent the spectrum 
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faced by SNA analysts.  Unfortunately, such a collection of real world dark network data 

sets does not exist in the open literature. 

Searching the literature, there are no existing publically available social network 

data sets which are suitable for testing the effectiveness of the methodology presented 

here.  The literature is replete with social network examples, including several dark 

network cases; however, the raw data used to construct these networks is not published 

whether due to privacy concerns, contractual agreements or the assumption of lack of 

relevance to a particular study.  An additional aspect of this research vein is that it would 

also be necessary to possess the raw data that was intentionally omitted from the social 

network models.  This inclusion of unreliable information sources precludes using 

currently existing social network models of real world dark networks available in the 

literature. 

Due to the lack of suitable real world data, the testing of the methodology will be 

conducted on simulated networks.  There are several random graph generators present in 

the literature with each differing in its capabilities to control various desired graph 

structural characteristics.  The first requirement is to generate a graph to serve as the true 

underlying social network.  Next, sources reporting true and false information are 

created. 

3.2.1 Random Social Network Generation. 

Random graph generation dates to the first algorithm by Erdös and Rényi (Erdös 

& Renyi, 1959).  This earliest algorithm suffers from the fact that its degree distribution 

is not scale-free, unlike many common social networks.  There are scale-free graph 



www.manaraa.com

 

III-11 

 

generation algorithms, such as the preferential attachment model (Barabási & Albert, 

1999).  Although quite capable of creating scale-free random networks, the Barabási-

Albert preferential attachment algorithm’s utility for testing social network algorithms 

can be questioned for their failure to adequately mimic real world social networks in 

terms of clustering coefficients and degree correlation (Newman, 2002, p. 208701-2; 

Newman & Park, 2003, p. 036122-1).   

Information regarding real world dark networks’ characteristics is limited with 

only a few data sets’ clustering coefficients and degree correlations published.  Xu and 

Chen (2008) reported the clustering coefficients and degree correlations for three dark 

networks—Sageman’s Global Salafi Jihad dataset, a methamphetamines trafficking 

network, and a network of criminals involved in gang-related crimes.  The average 

clustering coefficients for these three networks are 0.55, 0.60, and 0.68, respectively, 

notably outside of the range of graphs produced by the Erdös-Rényi or Barabási-Albert 

algorithms.  Erdös-Rényi and Barabási-Albert generated graphs possess analytic results 

of degree correlations of 0 in the limit as the number of nodes becomes large (Newman & 

Park, 2003).  However, the degree correlations reported for the three dark networks are 

0.41, -0.14, and 0.17, respectively (Xu & Chen, 2008), while a drug importation network 

researched by Morselli and Petit (2007) possessed a degree correlation of -0.47 (Keegan, 

Ahmed, Williams, Srivastava, & Contractor, 2010).  The variability of degree 

correlations among the data sets reviewed here demonstrates the potential unrealistic 

nature of traditionally used random graph generation models to adequately represent real 

world dark networks. 
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To account for the deficiencies in creating realistic random social networks, 

random graph generation was accomplished via the Prescribed Node Degree, Connected 

Graph (PNDCG) generation algorithm (Morris, O'Neal, & Deckro, Forthcoming).  The 

algorithm allows for varying parameter settings in graph construction to create random 

networks with certain desired properties.  The algorithm generates connected graphs 

according to a desired degree distribution, while accounting for clustering and degree 

correlation.  An advantage of the PNDCG generation algorithm is its capability to 

produce random graphs that possess clustering coefficients and degree correlations 

commonly associated with social networks.  Other graph generations algorithms, such as 

preferential attachment method, do not consistently construct networks whose 

characteristics match empirical social networks. 

The user employing the PNDCG generation algorithm specifies the desired graph 

size in terms of number of nodes, the degree distribution, and a clustering parameter.  

One parameter, the network size, was adjusted according to a design of experiments 

construct detailed in Section 3.3.2.1, while the other graph generation parameters were 

held static to isolate effects in the binary similarity and dissimilarity measures.  All 

generated networks were restricted to undirected graphs.  Additionally, the generated 

degree distribution followed a power-law (scale-free), as described in Section 2.10.1, 

with alpha set constant at 2.4, a value typically in the range of empirical networks.  The 

clustering extension of the PNDCG algorithm, which encourages larger clustering 

coefficients, was not utilized. 
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3.2.2 Source Generation. 

For each generated “true” network, a collection of reliable sources and unreliable 

sources reporting social network information were created.  The reliable sources’ 

generation procedure assumes the source reports true information, although subject to 

random errors.  The unreliable sources are intended to report false information.  The 

reliable and unreliable source generation techniques are designed to create sources that 

are reporting on the same actors in the social network, but are providing different 

accounts of existing and null relationships among them.  Each source, both reliable and 

unreliable, is providing a report detailing a subset of the actors in the generated “true” 

social network and the existing relationships among them, with the difference between 

source types reflected in the accuracy of the information regarding the relationships.  

However, since each source is only reporting information on a subset of actors in the 

social network, it is possible that either a reliable or unreliable source may be the sole 

information provider on some of the actors in the network. 

The information sources may or may not be members of the social network under 

investigation.  The sources are reporting relationships among actors in the network.  For 

this study and experimentation, it is immaterial whether the source is a member of the 

social network reporting on relationships that they directly or indirectly participate, or if 

the information source is external to the network, providing information they collect by 

observing members of the network.  As discussed in Section 2.3, studies investigating 

social network information collection have found that participants within the social 

network can be unreliable when reporting information on the social network’s structure.  
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Dark network members may take active measures to prevent accurate collection by 

external organizations, causing the information collected and reported to be unreliable. 

The reliable and unreliable sources provide reporting in the form of an edge list.  

The edge list details a relationship between two nodes.  Examining and aggregating the 

nodes composing each dyad, a list of nodes composing the network as reported by the 

source can be constructed.  Additionally, by examining the reported nodes and noting the 

missing relationships on the edge list, a list of reported null relationships is obtained. 

3.2.2.1 Reliable Sources Generation. 

Reliable sources are generated by selecting edges uniformly at random in the true 

social network, with the probability specified by the design of experiments described in 

Section 3.3.  Reliable sources then report the edges and their accompanying nodes.  As a 

result of this construction method, a reliable source will never report a relationship 

occurring if it is not present in the true network, i.e. a false positive identification of a 

relationship.  Error is introduced intentionally to reflect inaccuracies in reporting by 

reliable sources omitting relationships between reported nodes, i.e. a false negative report 

of a relationship.  As they were constructed via edge selection, it is conceivable that a 

reliable source may report on nodes and omit an existing relationship between them. 

3.2.2.2 Unreliable Sources Generation. 

Unreliable sources are generated by selecting edges uniformly at random with the 

same probability as the reliable sources.  The difference lies in that unreliable sources are 

sampling from a “red herring” or diversionary network, a network generated under the 

same parameter specifications as the true network.  Since the diversionary network 
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possesses the same number of nodes as the true network, unreliable sources are reporting 

on the same actors but are drawing from a different set of relationships among them.  

This method enables unreliable sources to report nonexistent relationships between nodes 

as occurring and to omit existing relationships, false positive reports and false negative 

reports, respectively.  It is conceivable for unreliable sources to report dyads accurately if 

by chance the specific dyad’s status is the same in the “true” network as it is in the 

diversionary network. 

Each unreliable source is constructed from a diversionary network exclusive to 

that source, though the diversionary networks are constructed according to the same 

parameters as the true network.  Unreliable sources are independently constructed from 

other unreliable source as each utilizes its own diversionary network for construction as 

depicted in Figure III-5.  Reliable and unreliable sources both utilize the same technique 

to sample from their respective networks.  Thus, the only generation difference between a 

reliable and unreliable source is the underlying network from which they sample, with 

reliable sources sampling from the true underlying network and unreliable sources 

sampling from diversionary networks that are structural similar to the true network.  

Since social networks are sparse networks, it is expected that there will be substantial 

agreement on null relationships between sources, whether they are reliable or unreliable. 
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Figure III-5 Source Generation Overview 

 
 

3.3 Design of Experiment (DOE) 

The objective of the experimental testing is to characterize the methodology’s 

performance in correctly discriminating between reliable and unreliable sources 

providing social network information.  As social network analysts investigate varying 

types of social networks, the methodology’s performance response in the face of different 

conditions is of interest.  The majority of these conditions is outside of the analysts’ 

realm of control, but reflects the operating environment in which the SNA is being 

conducted.  To accurately characterize the methodology’s performance, it is necessary to 

determine and estimate the effects of various factors on the methodology’s performance. 



www.manaraa.com

 

III-17 

 

3.3.1 Response Variable. 

The objective of the methodology is to classify information sources providing 

social network data for incorporation into a social network model.  The methodology’s 

performance is measured on its ability to correctly distinguish between the generated 

reliable and unreliable sources.  The fuzzy clustering in the methodology possesses a 

cutoff parameter for which the sources are separated into the groups.  In practice, the 

SNA analyst specifies an appropriate cutoff parameter, perhaps as a reflection of 

operational risk, or whether the analysis is exploratory or being used for decision making.  

Accounting for these potential varying cutoff levels, the performance of the methodology 

can be examined at each possible cutoff value.  To summarize across all cutoff values the 

Area Under the Curve (AUC) provides a single value detailing the Receiver Operating 

Characteristics (ROC) curve performance as detailed in Section 2.9.  

The response variable for the experimentation is the Area Under the Curve (AUC) 

of the ROC graph.  This summary statistic captures the overall methodology’s 

performance over a range of parameter settings in the algorithm.  In the experimentation, 

the AUC was computed for each selected binary similarity measures to examine their 

overall performance when applied in the methodology. 

3.3.2 Factors. 

The Design of Experiment (DOE) was developed with four explanatory factors.  

In practical application, these factors are unknown quantities, yet SNA analysts conduct 

their analysis without knowing the factors’ values or effects.  Ideally, the methodology is 

robust in its performance, regardless of the factors’ values.  This experimentation is 



www.manaraa.com

 

III-18 

 

designed to determine the factors impact upon the methodology.  Constructing a DOE 

with these factors attempts to estimate the methodology’s robustness when applied 

against dark networks of unknown size with unknown graph structural characteristics.  

The four factors selected to test the methodology and the rationale for their selection 

follows. 

3.3.2.1 Network Size. 

The underlying network size was selected as a design factor to test the algorithms 

robustness when dealing with networks of differing sizes.  The network size is measured 

by the number of nodes present in the true network and the corresponding diversionary 

networks.  Real world social networks vary in size from relative small networks to in 

some cases, hundreds of thousands or millions of arcs and nodes if dealing with online 

social networks.  In the case of dark networks, the size of the network is unknown and in 

some cases may be quite difficult to accurately estimate.  One might also wish to model 

only a subset of the actors of the dark network dependent upon the analytical objectives. 

As the focus of this methodology is to assess sources reporting on dark networks, 

the network size was restricted to 200 node graphs in the small case and 1,500 node 

graphs in the largest case.  Due to the dearth of data on real world dark networks, the 

network sizes were selected to represent typical sized graphs faced by investigating social 

network analysts.  Two-hundred nodes were selected as a lower bound.  Although dark 

networks of smaller sizes certainly exist, it is unlikely that there are several sources of 

information on those networks whose reliability requires examination.  If a small network 

is being investigated and there are a few information sources, graph visualization 
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techniques, or consensus structure aggregation as discussed in Section 2.5.1, may be 

sufficient to assess the sources’ reporting concordance.  The upper bound of 1,500 nodes 

was selected arbitrarily to represent a large dark network.  There is nothing that restricts 

employing the methodology to this restricted range of networks.  However, the expected 

performance of the methodology would be an extrapolation from the experimental design 

investigated here. 

3.3.2.2 Number of Sources. 

The next exploratory factor is the number of sources reporting information on the 

social network.  The number of sources includes both reliable and unreliable sources.  In 

this experimentation, the number of sources was selected to be a percentage of the 

network size.  This percentage represents the number of sources reporting on the dark 

network, both reliable and unreliable.  In a real world application of a dark network, these 

sources could be informants, undercover collectors, electronic means, walk-ins, and so 

forth.  A lower bound of 5% and an upper bound of 10% were chosen.  As there is no 

reported open source data detailing informant statistics and other collection means of 

dark networks, the percentages selected here are arbitrary.    The lower bound was set at 

5% because, in practice, if there are only a few reporting sources, it is possible to 

intensively examine each source to assess its reliability.  In this experimentation, the 

minimum number of sources reporting on a social network is ten.  Ten sources provide 

enough complexity that may overwhelm a social network analyst’s ability to accurately 

assess the sources’ reporting reliability.  The upper bound of 10% was selected to 
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consider that dark networks undertake OPSEC activities which limit data collection 

efforts. 

An advantage of expressing the number of sources as a percentage of network 

size is there is a large difference between ten sources reporting on a 100 node network 

compared against ten sources informing on a 1,000 node network.  Utilizing a percentage 

mitigates this effect.  This inherently assumes defection rates are relatively constant and 

investigative resources are applied against dark networks proportionally to their size.  

While this latter assumption may be incorrect for an especially violent or effect small 

group, it has been adopted for the purpose of the experimentation. 

3.3.2.3 Number of Reliable Sources. 

The number of reliable sources is expressed as a percentage of the number of 

sources.  Again no real world data is available detailing the frequency of reliable sources 

to unreliable sources reporting social network information.  In an attempt to stress the 

methodology, the lower bound on the percentage of reliable sources was set at 60%.  This 

ideally aligns with real world worst case scenarios.  For the upper bound, the percentage 

was set to 80%, which is still a substantial number of false reports on a social network.  

The upper bound was selected at 80% because higher percentages lose analytical interest.  

If all sources are reliable, or if there are only a few unreliable sources against a backdrop 

of many reliable sources, then the necessity of applying the methodology is diminished. 

3.3.2.4 Sampling Percentage. 

The sampling percentage is a proxy for the amount of data the sources are 

reporting.  The sampling percentage is the probability of an individual edge being 
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reported by a source.  The more information individual sources report, the more 

aggregate information is available.  Increased amounts of information should ease 

assessment of reporting sources.  Of note, both reliable and unreliable sources possess the 

same sampling percentages.  Thus, the only distinguishing difference between a reliable 

and unreliable source is the network they are reporting on, the true underlying network 

for reliable sources and diversionary networks for the unreliable sources. 

3.3.2.5 DOE Factors’ Values. 

The DOE varies the number of nodes in the “true” social network graph and by 

construction the diversionary network graphs, the number of reliable and unreliable 

sources, and the sampling probability used to generate sources by random selection of 

edges from either true or false networks.  The total number of sources, both reliable and 

unreliable, was expressed as a percentage of the true social network graph’s size.  The 

number of reliable sources was expressed as a percentage of the total number of sources.  

By using percentages of the network’s size and number of sources, two levels for each 

factor could be examined while producing a variety of reliable and unreliable source 

combinations as presented in Table III-2. 

 

Table III-1 DOE Factors 
Factors -1 1 

Network Size A 200 1,500
# of Sources

(% network size)
B 5% 10% 

% Reliable 
Sources

C 60% 80% 

Sampling % D 10% 20% 
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3.3.3 DOE Justification. 

The experimental design space presented in Table III-1 precludes an exhaustive 

search and requires a DOE approach.  The network size, factor A, is restricted to integers, 

but complete enumeration of only this factor would require 1,301 design points to cover 

the specified range.   The remaining factors, expressed as percentages, are continuous 

variables, theoretically capable of taking on an infinite number of values.  In this 

experimentation, the number of sources and the number of reliable sources, both 

computed via the percentage specification, are restricted to integer solutions and could be 

enumerated.  Although, for every specified value of factor A, all possible integer 

solutions for factors B and C would have to be examined.  Factor D, the sampling 

percentage, is continuous and must be sampled at some set of levels.  Complete 

enumeration of the design space would be prohibitive as it would take 916,661 design 

points to cover all possible integer combinations of the first three factors, multiplied by 

the number of levels examined for the continuous factor D.   

3.3.4 Experimental Hypothesis. 

Ideally, the methodology would demonstrate consistent performance regardless of 

the factors’ values, i.e. the methodology is robust.  However, this is unrealistic as these 

factors are expected to have at least a minimal impact upon the methodology’s 

performance.  What must be discovered is the effect these factors have on the 

methodology’s performance to characterize under what conditions is it appropriate to 

apply the approach.  It is difficult to anticipate the impact of the underlying social 

network’s size and the number of information sources, yet these factors are present in 



www.manaraa.com

 

III-23 

 

every practical application of SNA.  The DOE will assist in statistically determining the 

impact of these factors on the methodology’s performance. 

The percentage of reliable sources and the sampling percentage are contributing 

factors present in every application of SNA.  In this experimentation, the sources are not 

all assumed to be reliable sources, as in most SNA applications.  The expectation is that 

the greater the percentage of sources that are reliable, the methodology’s performance 

would correspondingly improve.    The greater number of reliable sources providing 

correct reporting in comparison to unreliable sources should clearly distinguish the 

incorrect reporting as anomalies.  The sampling percentage should also possess a similar 

effect as it reflects the amount of data provided by each reporting source. 

Analysis of the experimentation results should estimate the effect of each factor 

and their interactions upon the methodology’s performance.  The statistical hypothesis 

tests whether for each of the four factors, denoted A through D, and their interaction 

terms, denoted AB through ABCD, their treatment effects, τ, are equal to zero as shown 

in Equation (3.1).  Statistically characterizing the factors effects should identify the utility 

of the methodology under varying parameter conditions.  This will allow SNA analysts to 

properly employ the methodology under conditions for which it is appropriate. 

:଴ܪ  ߬஺ ൌ ߬஻ ൌ ڮ ൌ ߬஺஻஼஽ ൌ 0 

஺: at least one ߬௜ܪ ് 0 for any factor or factor interaction ݅ 
(3.1) 

3.3.5 24 Full Factorial Design. 

With the four independent variables identified in Section 3.3.2, it was decided to 

conduct a 24 full factorial design.  A 24 full factorial design only encompasses 16 design 

points, but allows all main effects and interaction effects, including up to four factor 



www.manaraa.com

 

III-24 

 

interactions, to be investigated.  The 24 full factorial design points, expressed in standard 

order, are listed in Table III-2 (Montgomery, 2005, pp. 224-226). 

 

Table III-2 24 Full Factorial Design Points 
Factors (Percentages) Factors (Absolute Numbers) 

Size 
# 

Sources 
# 

Reliable 
Sample 

% 
# 

Sources 
# 

Reliable 
Sample 

% 
Run A B C D B C D 
(1) 200 5% 60% 10% 10 6 10% 
a 1500 5% 60% 10% 75 45 10% 
b 200 10% 60% 10% 20 12 10% 
c 200 5% 80% 10% 10 8 10% 
d 200 5% 60% 20% 10 6 20% 
ab 1500 10% 60% 10% 150 90 10% 
ac 1500 5% 80% 10% 75 60 10% 
ad 1500 5% 60% 20% 75 45 20% 
bc 200 10% 80% 10% 20 16 10% 
bd 200 10% 60% 20% 20 12 20% 
cd 200 5% 80% 20% 10 8 20% 
abc 1500 10% 80% 10% 150 120 10% 
abd 1500 10% 60% 20% 150 90 20% 
acd 1500 5% 80% 20% 75 60 20% 
bcd 200 10% 80% 20% 20 16 20% 
abcd 1500 10% 80% 20% 150 120 20% 

 

3.3.6 Center Point Runs. 

Center point runs were added to the full factorial design to test for the existence of 

quadratic curvature within the design space.  The center point runs do not affect the 

factors’ effect estimates (Montgomery, 2005, p. 247).  For this experiment, conducting 

runs at the true center points is not feasible due to the center points of some of the 

percentage factors generates non-integers for number of sources and number of reliable 
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sources.  The center point design points were rounded to the nearest integer to provide 

integer solutions to the number of sources and number of reliable sources.  This means 

the center point runs will affect the factors’ effect estimates, albeit in a small manner, and 

that the full factorial design matrix augmented with the center point runs will not be truly 

orthogonal.  Section 3.3.7 will describe another augmentation which has a similar impact 

in regards to the design matrix’s orthogonality.  Table III-3 compares the center point 

runs in original space where the rounding occurred and also in design space to highlight 

the deviation from the ideal center point located at zero for all factors. 

 

Table III-3 Center Point Runs 
Original Space Design Space 
A B C D A B C D 

850 64 45 15 0 0.012 0.031 0 
 

 

3.3.7 NOLH Space-Filling Design. 

Due to the expected complexity and nonlinearities of the response surface, a 

space-filling design was employed to augment the original full factorial design.  

Specifically, conducting experiments on graphs with varying structural characteristics, 

does not lend one to justify assumptions of the response variable’s behavior.  

Assumptions such as error terms’ distribution properties, i.e. the traditional normally 

distributed errors, may not apply to graphs and the associated response variable.  As such, 

the potential complex response surface may not be adequately investigated with a full 

factorial design of experiments. 
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A potential solution to this problem is a space-filling design.  “A good space-

filling design is one in which the design points are scattered throughout the experimental 

region with minimal unsampled regions (Cioppa & Lucas, 2007, p. 45).”  One approach, 

Latin hypercube sampling, involves dividing an input variable’s range into several strata 

and draw a value from each strata.  The process is repeated for each of the input variables 

and the values for each input variable are then assigned to each run, with each variables’ 

values appearing only once in the design matrix (Cioppa & Lucas, 2007, p. 47).  Cioppa 

and Lucas (2007) provide an algorithm that produces nearly orthogonal Latin hypercube 

(NOLH) designs.  While their algorithm is computational intensive, an Excel spreadsheet 

implementation that provides previously generated NOLH designs within specified 

orthogonality and space-filling parameters is available (Sanchez, 2005). 

Using the Excel spreadsheet (Sanchez, 2005), the four design factors were 

inputted to create a NOLH design comprising 17 runs.  The Excel spreadsheet assumes 

integer factors, which were obtained by multiplying the percentage factors by 100.  The 

maximum absolute correlation found between the factors in the NOLH design is 0.125.  

The NOLH design points are displayed in Table III-4 and graphically, along with the full 

factorial design points, in Figure III-6.  As illustrated by Figure III-6, the NOLH design 

points fill in the space in the settings for each factor pairing, in comparison to the full 

factorial design points, which bounds the region by the extreme points: ሺ1,1ሻ, ሺ1, െ1ሻ, 

ሺെ1,1ሻ, and ሺെ1,െ1ሻ.  Due to rounding for some of the factors, the center point runs 

generated by the full factorial design do not perfectly align with the center point runs 

generated by the NOLH design.  Both sets of center points were included in the 

experimentation. 
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Table III-4 NOLH Design Points 
Original Space Design Space 

A B C D A B C D 
606 61 46 14 -0.375 1.026 0.541 -0.20 
281 17 13 16 -0.875 -0.580 0.647 0.20 
363 25 15 13 -0.749 -0.245 -1.0 -0.40 
444 36 24 20 -0.625 0.243 -0.333 1.0 
1175 118 81 11 0.50 1.017 -0.136 -0.80 
1500 105 71 18 1.0 -0.20 -0.238 0.60 
1013 61 49 13 0.251 -0.591 1.033 -0.40 
931 84 63 19 0.125 0.609 0.5 0.80 
850 68 48 15 0.0 0.20 0.059 0.0 
1094 55 35 16 0.375 -0.989 -0.636 0.20 
1419 128 81 14 0.875 0.608 -0.672 -0.20 
1338 107 85 18 0.751 0.199 0.944 0.60 
1256 88 65 10 0.625 -0.197 0.386 -1.0 
525 26 18 19 -0.50 -1.019 -0.077 0.80 
200 16 12 12 -1.0 0.20 0.50 -0.60 
688 62 37 17 -0.249 0.605 -1.032 0.40 
769 46 30 11 -0.125 -0.607 -0.478 -0.80 

 
 

3.3.1 Replications. 

Replications were conducted at each design point in order to obtain an estimate of 

experimental error (Montgomery, 2005, p. 13).  “Replication reflects sources of 

variability between runs and (potentially) within runs (Montgomery, 2005, p. 14).”  For 

this experimentation, there is no available data in the literature indicating the magnitude 

of the experimental error to be expected.   

Operating characteristic curves can be used to compute the number of 

replications, n, necessary to specify a level of acceptable type II error (Montgomery, 

2005, pp. 177-178).  The experiment was designed to detect a 0.05 difference in the 

performance means between treatment main effects, D.  The standard deviation, ߪ, was 
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estimated to be 0.025.  The degrees of freedom of any main effect in the model is the 

number of levels, a, minus one.  The other three factors can be combined into a single 

factor with 8 levels, b, and its associated degrees of freedom is ܾ െ 1.  Using the Φଶ 

parameter computed as in Equation (3.2), Table III-5 displays the associated ߚ and the 

power of the test, ሺ1 െ  ሻ, for several values of n (Montgomery, 2005, pp. 177-178).  Asߚ

displayed in Table III-5, five replications are necessary to have a power greater than 0.80, 

a common statistical threshold.  Ten replications were utilized in the experimentation to 

compensate for inaccuracies in the standard deviation estimate. 

 

 
Figure III-6 Experimental Design Points (in Design Space) 
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Φ2 ൌ
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ଶߪ2ܾ
 (3.2) 

 
 

Table III-5 Replications Calculations 

n Φ2 Φ 
Numerator 

DOF 
Error 
DOF β (1-β) 

2 2 1.41 1 16 0.60 0.40 
3 3 1.73 1 32 0.32 0.68 
4 4 2.00 1 48 0.21 0.79 
5 5 2.24 1 64 0.17 0.83 
6 6 2.45 1 80 0.09 0.91 
7 7 2.65 1 96 0.055 0.945 
8 8 2.83 1 112 0.022 0.978 
9 9 3.00 1 128 0.014 0.986 
10 10 3.16 1 144 0.011 0.989 

 
 

As each replication involves a new set of “true” and “false” networks to generate 

sources, it is expected the replications will reflect the graph to graph variation at each 

combination of factor settings.  Additional statistical approaches, such as ANCOVA, to 

account for the expected graph to graph variation are discussed in Section 2.10.1. 

3.4 Statistical Analysis of the DOE 

Conducting the experiment under a DOE framework allows for efficient statistical 

analysis of the factors and their impacts upon the response variables.  The methodology’s 

performance was measure by calculating the Area Under the Curve (AUC) as a single 

measurement of the algorithm’s classification accuracy.  Collapsing all source 

classifications into a single dimension allows each set of sources, both reliable and 

unreliable, describing a true social network to be considered a single case or run within 
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the experimental design.  However, mathematical properties of the AUC require 

consideration before the analysis can begin. 

3.4.1 Transforming the Response Variable. 

The AUC ranges from its minimum value of 0.5, representing poor classification 

accuracy, to its maximum value of 1.0, indicating perfect identification of sources as 

either reliable or unreliable.  However, traditional DOE utilizes linear regression for its 

analysis.  In this instance, the dependent variable, AUC, is continuous but bounded on 

[0.5, 1.0].  Examining Figure III-6 shows that many observed values lie close to a bound.  

This may lead to deriving a regression equation whose predictions regularly lie outside 

the bound (Montgomery, Peck, & Vining, 2006, p. 429).  To correct for this, response 

variable transformations are required. 

Several response variable transformations are in common practice to account for 

bounded variables.  Conducting regression with a proportion as the response variable has 

been addressed in the statistics literature (Bottai, Cai, & McKeown, 2010, p. 310).  As a 

proportion is restricted to range between zero and one, transformations are applied to 

enable regression analysis.  A commonly used transformation, the logit transformation, 

takes variables mapped on (0, 1) and using logarithms, transforms them to the (-∞, ∞) 

domain.  Thus to take advantage of this commonly applied transform, the AUC must be 

mapped from its range of [0.5, 1.0] to (0, 1). 

The initial step is to transform a response variable, y, from [a, b] to [0.0, 1.0].  

This can be accomplished by using Equation (3.3) (Smithson & Verkuilen, 2006, p. 54). 
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 ሺݕ െ ܽሻ
ሺܾ െ ܽሻ

 (3.3) 

Transforming a response variable, y, from [0.0, 1.0] to (0.0, 1.0), so that the 

extreme values are no longer possible, can be accomplished by Equation (3.4), where n is 

the sample size (Smithson & Verkuilen, 2006, p. 55).  In this application, the sample size 

is adjusted to account only the cases in which the AUC could be computed.  This 

necessity will become evident when the logit transform is presented as the natural 

logarithm of zero is negative infinity. 

ሺ݊ݕ  െ 1ሻ ൅ 0.5
݊

 (3.4) 

Finally, the dependent variable, y, whose domain is (0, 1) can be mapped to the 

continuous real line, (-∞, ∞), by using the logit transform, commonly used in logistic 

regression, as described in Equation (3.5) (Hosmer & Lemeshow, 2000, p. 6). 

 ln ൤
ݕ

1 െ ݕ
൨ (3.5) 

Utilizing these three transforms, the AUC is transformed from its initial [0.5, 1.0] 

range to (-∞, ∞) on which regression can be applied. 

3.5 Experimentation Implementation 

The underlying social networks are generated using C code implementing the 

PNDCG algorithm.  The sources are generated using Java code that extends the Java 

Universal Network/Graph Framework (JUNG) library, version 2.0.1 (O'Madadhain, 

Fisher, Nelson, White, & Boey, 2010).  The JUNG library was also the basis for 

computing the SNA network measures used in Section 5.7.2 in conjunction with 

additional Java code.  The source comparisons utilizing the binary similarity/dissimilarity 
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measures are conducted through Java code.  Some of the main components of the Java 

code are available in Appendix F and Appendix G. 

The methodology components of weighted multidimensional scaling, fuzzy 

clustering, and ROC curves were implemented in R, x64 version 2.13.0 (R Development 

Core Team, 2011).  The weighted MDS was accomplished via the smacof package (de 

Leeuw & Mair, 2009), the fuzzy clustering was conducted using the cluster package 

(Maechler, Rousseeuw, & Struy, 2005), and the ROC curves were computed using the 

ROCR package (Sing, Sander, Beerenwinkel, & Lengauer, 2009).  The statistical analysis 

of Chapter V was conducted in R and the quantile regression of Section 5.8 was 

performed via the quantreg package (Koenker, 2011).  The R script for executing the 

methodology is available in Appendix E. 

The experimentation was conducted on a desktop computer containing a 2.70 

GHz AMD Athlon™ II X2 215 processor.  The desktop was equipped with 4.00 GB of 

RAM.  The operating system was Windows 7 x86 Enterprise edition, 64 bit version.  The 

Java code was composed and compiled in Netbeans IDE 6.9.1 (Oracle Corporation, 

2010). 

3.6 Chapter Summary 

This chapter outlined the overall methodology and detailed the experimental 

testing to examine the methodology’s performance.  The experimentation is conducted 

under a DOE framework, with the factors, design, replications, and necessary data 

transformations for analysis provided in this chapter.  Additionally, the need for 

artificially social network data was justified and a method for generating reliable and 
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unreliable social network information sources was described.  Chapter IV discusses and 

conducts the methodology for selecting binary similarity measures to conduct source 

reporting comparisons.  Utilizing the binary similarity measures identified in Chapter IV, 

Chapter V will describe the methodology for source assessment, present a detailed 

example of employing the methodology, and then analyze the results from the 

experimentation detailed in this chapter. 
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IV. Pairwise Source Concordance Measure Selection 

This chapter details the methodology for measuring concordance among the social 

network information sources.  It begins with a statistical analysis utilizing Fleiss’ Kappa, 

a standard nonparametric statistic for inter-rater reliability.  Following the Fleiss’ Kappa 

analysis is a description of the methodology to select a measure to conduct pairwise 

source comparisons.  Finally, a detailed example of selecting appropriate binary 

similarity measures to compare sources is presented.   

4.1 Inter-Rater Reliability with Fleiss’ Kappa 

Given a collection of information sources reporting social network data, one has a 

listing of dyads with various sources classifying them as present or absent.  The objective 

is to determine how consistently information sources classify the dyads.  This is 

analogous to assessing inter-rater reliability, for which a stastistical technique, Fleiss’ 

Kappa, is commonly applied.  Fleiss’ Kappa measures inter-rater reliability across all 

information sources as discussed in Section 2.8.1.  Fleiss’ Kappa does not identify 

reliable or unreliable sources, but merely assesses the collection as a whole.  One would 

assume the greater the percentage of reliable sources in a collection of sources, the 

greater the Fleiss’ Kappa score.  If true, this would imply that Fleiss’ Kappa could be 

used as an indicator of whether unreliable sources are present in a collection of sources.  

Unfortunately, the results obtained from the experimentation conducted here do not 

support such a conclusion. 

Fleiss’ Kappa was computed for each experimental run and generally showed 

weak to moderate concordance among the reporting sources, which is expected due to the 
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purposeful inclusion of unreliable information sources.  These are displayed in Table 

IV-1 which averages the ten replications for each design run.  The overall average for 

Fleiss’ Kappa is 0.232. 

The Pearson product moment correlation between Fleiss’ Kappa and the 

percentage of reliable sources in the sample was calculated and found to be 0.375.  This 

exhibits a weak correlation to the expectation that with an increasing percentage of 

reliable sources in the sample, the sources’ concordance, measured by Fleiss’ Kappa, 

would improve.  Of interest, Fleiss’ Kappa’s correlation with the total number of sources, 

both reliable and unreliable, is 0.705.  This may explain Fleiss’ Kappa’s weak correlation 

with the percentage of reliable sources as the number of sources is a more important 

contributor to the Fleiss’ Kappa scoring.  Unfortunately, this experimentation 

demonstrates that Fleiss’ Kappa is unsuitable as a measure of concordance of social 

network information sources.  The alternative was to investigate pairwise similarity 

between sources. 
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Table IV-1 Fleiss' Kappa Averaged by Experimental Run 

Run 

Average 
Fleiss' 
Kappa 

% 
Reliable 
Sources 

Number 
of 

Sources 
(1) 0.028 60% 10 

a 0.188 60% 75 
b 0.071 60% 20 
c 0.031 80% 10 
d 0.028 60% 10 

ab 0.248 60% 150 
ac 0.307 80% 75 
ad 0.232 60% 75 
bc 0.153 80% 20 
bd 0.135 60% 20 
cd 0.075 80% 10 

abc 0.391 60% 150 
abd 0.282 60% 150 
acd 0.405 80% 75 
bcd 0.249 80% 20 

abcd 0.451 80% 150 
centerpt 0.300 70% 64 

SF1 0.279 75.4% 61 
SF2 0.171 76.5% 17 
SF3 0.108 60% 25 
SF4 0.207 66.7% 36 
SF5 0.313 68.6% 118 
SF6 0.302 67.6% 105 
SF7 0.337 80.3% 61 
SF8 0.356 75% 84 
SF9 0.288 70.6% 68 

SF10 0.238 63.6% 55 
SF11 0.262 63.3% 128 
SF12 0.409 79.4% 107 
SF13 0.324 73.9% 88 
SF14 0.202 69.2% 26 
SF15 0.116 75% 16 
SF16 0.220 59.7% 62 
SF17 0.184 65.2% 46 
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4.2 Source Comparison Methodology 

The methodology presented here proceeds with conducting comparisons among 

the sources in a pairwise fashion.  These pairwise source comparisons are accomplished 

by examining the concordance of the sources reporting whether dyads are present or 

absent, for the dyads they have in common.  On a dyad by dyad basis, it is noted if the 

sources confirm the existence, concur on the absence or if disagreement exists.  This 

allows construction of the confusion matrix described in Section 2.8 and the subsequent 

application of a selected binary similarity measures.  This section begins with a 

discussion of a methodology to select one or a set of suitable binary similarity measures.  

The objective of this phase of the methodology is to generate source similarity scores, as 

shown in Figure IV-1, which are derived from the selected binary similarity measure. 

 

 
Figure IV-1 Source Similarity Scores Generation 
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4.2.1 Empirical Justification of Source Reporting Comparisons. 

Romney and Weller (1984, p. 63) defined an informant’s reliability as “the 

correlation between the recall data of an individual and the total aggregated recall data of 

the group (minus the individual’s own data).”  Using the four social network data sets 

explored in Bernard’s, Killworth’s, and Sailer’s (1979/1980) study, described in Section 

2.3.2.2, and measuring accuracy by examining information reported by informant 

participants in the social network as compared against data derived from independent 

observations, they determined “the more reliable an individual is the more accurate he or 

she is (Romney & Weller, 1984, p. 66)” and further hypothesized that “individuals or 

informants can be weighted by their reliability, i.e. the answers of ‘better’ informants 

would be taken more seriously or weighted more than the answers of the less reliable 

informants (Romney & Weller, 1984, p. 76).”  As they defined reliability in terms of a 

source’s agreement with the consensus obtained from the complete collection of 

information, their results lend credence to the approach of assessing individual sources 

via comparisons to the collection of sources. 

4.2.2 Confusion Matrices Creation. 

Sources reporting on the same social network were compared pairwise and the 

results tabulated in a series of confusion matrices.  The procedure for source comparison 

was as follows.  All dyads reported by both sources were examined.  If both sources 

agreed upon the presence of the dyad, a positive match was recorded in cell a of the 

confusion matrix.  If both sources agreed upon the absence of the dyad a negative match 
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was recorded in cell d in the confusion matrix.  If one source confirmed a relationship 

and the other denied its presence, the dispute was recorded in cells b or c as appropriate. 

4.2.3 Selection of Source Comparison Measures. 

 Section 2.8.3 introduced 105 binary similarity and dissimilarity measures found 

in the literature, which are listed in Table A-1 and Table A-2 in Appendix A.  These 105 

binary similarity and dissimilarity measures can be reduced to 96, as several measures 

were algebraically shown to be perfectly correlated in Table II-15.  As even this reduced 

number would prove to be unwieldy, a methodology, presented here, was developed to 

select a reduced set of measures.  Selecting appropriate binary similarity or dissimilarity 

measures can be accomplished by examining several desirable characteristics.  The 

potential measures’ characteristics are derived empirically on data sets relevant to the 

application.  One characteristic is the computability of the various binary measures.  

Another is the correlation among the measures.  Measures that are highly correlated 

indicate a redundancy and allow for reductions in the total number of binary similarity 

and dissimilarity measures required to adequately describe the data set. 

Selection of appropriate binary similarity and/or dissimilarity measures depends 

upon the particular application under investigation.  Since the measures were introduced 

as theoretically measuring different aspects of similarity, it is likely that results can be 

quite divergent when applied to specific data sets.  For example, the discussion on the 

importance of negative matches highlights that a data set possessing a large number of 

negative matches will present different values across the collected binary similarity and 

dissimilarity measures as compared against a data set with minimal negative matches.  
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Ideally, several data sets would be available to generate a variety of confusion matrices 

that are possible for the specific application under consideration. 

4.2.3.1 Testing Measures’ Computability. 

Dependent upon characteristics of the confusion matrix, some binary similarity 

and dissimilarity measures cannot be computed.  This results from issues such as square 

roots of negative numbers or zero appearing in the denominators of equations.  These 

circumstances can occur when two cells of the confusion matrix possess zeros, 

particularly if one of them is cell a.  If some of the cells of the confusion matrix are 

significantly larger in terms of magnitude than the remaining cells, negative numbers can 

occur, which cause some measures utilizing square roots to become incomputable.  For 

example, two of the measures, Gilbert & Wells and Stiles, utilize logarithms, but 

occasionally proved incomputable as they attempted to take the logarithm of zero.  Note, 

that computability of measures is highly dependent upon the data set being tested as 

certain characteristics of confusion matrices drive computability.  Generalizing to other 

data sets should therefore be considered cautiously. 

4.2.3.2 Group the Measures. 

Binary similarity and dissimilarity measures that are strongly positively or 

negatively correlated are providing redundant information.  As the confusion matrices are 

composed of only four numbers, the magnitude of these numbers in relation to each other 

substantially impacts the binary similarity measures’ values.  Dependent upon the 

specific application and the associated confusion matrices’ characteristics, binary 

similarity measures’ correlation among themselves may vary. 
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As a result, the correlation profiles of the measures may be dependent on the 

application.  However, if confusion matrices exist from previously obtained application 

data, or can be simulated with proper confusion matrix characteristics, the correlation 

profile of the measures can be empirically constructed.  The correlations among the 

binary similarity measures can be summarized in a correlation matrix. 

4.2.3.3 Identify Similarity Measures Clusters. 

Clusters of measures can be observed in the correlation matrix, by identifying 

groups of measures which possess strong positive or negative correlations.  There are 

numerous clustering techniques to identify these groupings.  In this research, Multi-

Dimensional Scaling (MDS) is performed on the correlation matrix.  Groupings of binary 

similarity measures are then identified via visual inspection.  In some instances, measures 

can be identified as isolates, i.e. not associated with any cluster. 

4.2.3.4 Determine Representative Measures. 

For each cluster obtained from the MDS, a representative binary similarity 

measure may be selected.  As each cluster involves strongly correlated measures, a 

representative measure ideally exhibits the same dimensions of similarity expressed by 

the other measures composing the cluster.  In this research, for every identified cluster, 

MDS was executed for only the measures comprising that cluster.  A binary similarity 

measure was selected based on its positioning in the MDS visualization, with the 

intention of identifying a measure in the center of the visualization as the best 

representative of that cluster. 
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4.2.3.5 Select Desired Measures. 

At this point, the complete listing of candidate binary similarity measures has 

been reduced to representative and isolate measures.  Working with a reduced set, the 

analyst can further reduce the number of measures by examining specific characteristics 

of each measure, such as the measures’ ranges.  Representative measures that are deemed 

unsuitable can be replaced by other measures from their respective clusters if 

advantageous.  Criteria specific to the application can be used to reduce the number of 

selected measures to a reasonable size, or potentially increase the number of measures if 

greater diversity is required.  The binary measure selection methodology overview is 

provided in Figure IV-2 and the experimental implementation is detailed in Section 4.3. 

 

 
Figure IV-2 Source Comparison Binary Measure Selection Process 

 

Generate Confusion 
Matrices

Test Measures’ 
Computability

Group the Measures
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Measures

Select Desired Measure



www.manaraa.com

 

IV-10 

 

4.3 Pairwise Similarity Measure Selection 

To generate confusion matrices to select an appropriate similarity measure 

following the procedures outlined in Section 4.2.3, experimental data was utilized.  

Reliable and unreliable sources were generated according to the full factorial design runs 

as described in Section 3.3.3 and depicted in Table III-2.  Confusion matrices were then 

generated for every pairing of sources from each design point and the ten replications 

corresponding to the design points.  For each factor combination run, pairwise 

comparisons generated a grand total of 56,690 confusion matrices.  The 96 distinct binary 

similarity measures identified in Section 4.2.3 were then calculated for each of the test 

confusion matrices. 

4.3.1 Testing the Computability. 

For every one of the 56,690 generated confusion matrices, the proportion of 

matrices that each measure could be computed was found.  Figure IV-3 displays a 

histogram of the number of measures for each fraction bin, which shows that the majority 

of measures are computable on at least 80% of the confusion matrices, with the exception 

of Batagelj & Bren, Gilbert & Wells, and Pearson-III.  The reduction in binary similarity 

and dissimilarity measures under consideration by removing those which could be 

computed in less than 80% of the cases left 93 measures.  These 93 measures are 

contenders for selection due to their appropriateness to the data set representative of this 

specific application.  A different data set could potentially lead to substantial differences 

in the measures’ computability distribution.  Of note for this particular data set, cell d, 

representing agreement between information sources on null relationships, is significantly 
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larger than the elements in the other cells of the confusion matrices.  This results from 

social networks being sparse networks, consisting of relatively few edges in the graph.  

This peculiarity of the source reliability application is the driving factor for some 

measures possessing surprisingly low computability percentages. 

 

 
Figure IV-3 Measures' Computability Percentages 

 
 

4.3.1.1 Measures’ Computation Times. 

The binary similarity measures’ equations involve at most four variables: 

elements a, b, c, and d from the confusion matrix.  Despite the varying complexity of the 

equations in Table A-1 and Table A-2 in Appendix A, substantial differences in 

measures’ computation times are not exhibited.  In this experimentation, generating the 

confusion matrices proved to be more computationally intensive than calculating the 

complete collection of binary similarity measures. 
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4.3.2 Discovering Similar Measures Groupings. 

The correlation among the remaining measures was investigated to discern 

whether further reductions were possible.  Figure IV-4, produced in the software package 

R (2011) via the corrplot package (Wei, 2011), displays a graphic version of the pairwise 

correlation matrix.  The pairwise correlation is computed via Pearson's product-moment 

between the two measures values for every confusion matrix where both measures could 

be calculated.  Strong positive or negative correlations among measures indicate a 

redundancy, as strongly correlated measures are capturing the same 

similarity/dissimilarity dimensions within the data set.  As Figure IV-4 illustrates 

ordering the measures via hierarchical clustering, there is high correlation among several 

groupings of measures. 

4.3.2.1 Identify Groupings Among Binary Measures. 

Various algorithms exist to cluster the correlation matrix to identify groupings of 

measures.  An alternative approach taken here utilizes Multidimensional Scaling (MDS).  

The pairwise correlation matrix was converted to a distance matrix by applying the 

transformation one minus the absolute value of each element’s correlation, as suggested 

by Choi (2008, p. 70).  This places measures with strong positive or negative correlations 

close to each other in the MDS visualization, while increasing the distance of measures 

with low correlations.  The MDS visualization, generated via R’s corrmds function 

(2011) depicted in Figure IV-5 with an aspect ratio of one, leads to visually aggregating 

the measures into five main groupings and identification of three isolated measures. 
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Figure IV-4 Correlations Among the Reduced Set of Measures 

 
 

To find a single representative binary measure within each grouping, MDS was 

again applied to only the members of the designated group.  Reapplying MDS 

sequentially with only the group members’ measures is necessary to avoid MDS 

positioning due to influence from measures in other groups.  MDS utilizes all distance 

pairings to place points.  Conducting MDS in a sequential manner using only a subset of 

the data, i.e. the group’s members, identifies a central representative for each group.   
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Figure IV-5 MDS of Reduced Set Measures with Groupings 

 
 

Specific measures centrally located by the subsequent MDS were selected as 

representatives.  Figure IV-6, Figure IV-7, Figure IV-8, and Figure IV-9 display the MDS 

visualizations for groups 1, 2, 4 and 5, respectively; each with an aspect ratio of 1.  As 

Group Three is only composed of three measures, the subsequent MDS visualization is 

uninteresting, merely placing Dispersion in between Michael and Russell & Rao.  

Examining the MDS of the 66 measures composing Group One listed in Table IV-2 and 

shown in Figure IV-6, Cohen’s Kappa’s central location, identified visually as being 

close to the origin, and its greater prevalent usage, led to its selection to represent the 

measures clustered in Group One listed in Table IV-2. 

Group 1 

Group 2 

Group 3 

Group 4 

Isolates 

Group 5 
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Figure IV-6 MDS of Group 1  
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Table IV-2 Group 1 Measures 
Anderberg Gilbert Pearson-I 
Baroni-Urbani & Buser-II Goodman & Kruskal Min Pearson-II 
Benini Goodman & Kruskal Tau Peirce-I 
Braun-Blanquet Gleason Peirce-II 
Browsing Gower Phi Coefficient 
Clement Hamming Scott 
Cohen's Kappa Harris & Lahey Simpson 
Cole-I Hellinger Sokal & Sneath-I 
Cole-II Inner Product Sokal & Sneath-IV 
Cole-III Intersection Sokal & Sneath-V 
Cosine Jaccard Sorgefrei 
Dennis Jaccard-3W Stiles 
Dice-I Koppen 1884 Tarantula 
Dice-II Kuder & Richardson Tarwid 
Digby Kuhn Tversky 
Doolittle Kuhn Proportion Warrens-I 
Euclidean Kulczyński-I Warrens-IV 
Eyraud Kulczyński-II Warrens-V 
Fager & McGowan Loevinger's H Yule Q 
Fleiss Maxwell & Pilliner Yule W 
Forbes-I McConnaughey   
Fossum Pearson & Heron-II   

 
 

Gini was selected to represent the five measures of Group Two, listed and  

displayed in Figure IV-7, due to its central location in the MDS.  Gini is the measure 

closest to the origin, which is the centroid of the group, computed by taking the average 

of all of the datapoints. 

 



www.manaraa.com

 

IV-17 

 

 
Figure IV-7 MDS of Group 2 

 
 

Anderberg’s D similarity measure was selected to represent the five measures of 

Group Four displayed in Figure IV-8, due to its central placement in the MDS.  
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Figure IV-8 MDS of Group 4 

 
 

Group Five’s MDS, depicted in Figure IV-9, contains the placement of eleven 

measures, of which, Hamann was chosen to represent Group Five, due to its proximity to 

the centroid of the group and grerater familiarity than Hawkins & Dotson. 
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Figure IV-9 MDS of Group 5 

 
 

Excluded from any of the five groupings, three isolated measures remain: 

Goodman & Kruskal’s Maximum Formula, Peirce-III, and Sokal & Sneath-III.  These 

measures appear to capture an aspect of similarity not represented by any of the other 

binary measures investigated here and so they remained as viable candidate measures for 

testing. 

4.3.3 Selected Measures. 

Initially facing 105 binary and dissimilarity measures, the methodology presented 

here reduced the set to eight measures: Cohen’s Kappa, Gini, Dispersion, Anderberg’s D, 

Hamann, Goodman & Kruskal’s Maximum Formula, Peirce-III, and Sokal & Sneath-III.  

These measures were selected due to an empirical investigation of relevant data sets for 

this particular application.  First, the computability of measures was investigated, 

garnering a set of measures that are suitable for the application.  Correlation comparisons 

allowed for further reductions in the measures under consideration by removing 
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extraneous highly correlated measures.  In this experiment, the correlation comparisons 

led to Cohen’s Kappa, Gini, Dispersion, Anderberg’s D, and Hamann similarity 

measures representing 90 similarity measures by examining the groupings resulting from 

multidimensional scaling.  Most importantly is the lack of observed correlation among 

the eight selected similarity measures.  Apparently, these eight measures address different 

dimensions of similarity for this specific data set and thus all should be utilized if 

possible to adequately describe this application’s data set. 

Additional considerations can be incorporated to account for application 

specificities.  For the purpose of social network source assessment, the binary similarity 

measure between two sources is converted into a dissimilarity measure.  This is 

accomplished by simply subtracting the measures’ scores from the measures’ theoretical 

maximum scores.  For the set of eight measures selected in this experimentation, Sokal & 

Sneath-III is not bounded and therefore cannot be converted into a dissimilarity measure.  

As Sokal & Sneath-III was an isolated measure as opposed to representing a grouping of 

measures, it can be eliminated from consideration.  If it had been a representative 

measure, another measure from the grouping could have been selected as a replacement 

measure. 

4.4 Chapter Summary 

This chapter provided details of the developed methodology with an example of 

its application to determine suitable binary similarity measures.  The example was 

conducted on simulated data obtained in accordance with the data generation techniques 

and experimental design as described in Sections 3.2 and 3.3, respectively.  The 
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methodology presented in this chapter can derive different sets of binary similarity 

measures dependent upon the specific application.  Based on the experimentation 

conducted here, the methodology was able to reduce the initial 105 binary similarity 

measures candidates to seven suitable measures for the information source comparison 

application.  The methodology also demonstrated its flexibility in selection of 

representative measures to account for application specific considerations.  As such, it 

can be applied for other applications outside the thrust of this dissertation. 

With a set of source comparison measures selected, Chapter V proceeds to 

examine that set to determine a single comparison measure to conduct the remaining 

components of the methodology.  Armed with a manageable number of binary similarity 

measures with which to generate source similarity scores, source weightings can be 

determined and the sources can be grouped to assess their likely reliability. 
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V. Source Comparison 

This chapter details and conducts the remaining components of the methodology.  

This chapter begins by assuming a binary similarity measure has been selected and 

describes in detail the remaining components of the methodology.  It then steps through a 

small example employing the methodology for demonstration purposes.  Then, utilizing 

the experimental design detailed in Section 3.3 and the set of binary similarity measures 

identified using the methodology developed in Chapter IV, the chapter presents the 

selection of a single measure to generate source similarity scores.  It will then 

demonstrate the methodology components of calculating source weightings and the 

clustering of sources to assess their likelihood of reliability.  Next, it examines the 

performance of the methodology by utilizing the DOE described in Section 3.3.  The 

experimentation investigates factors that affect the methodology’s performance in 

distinguishing between reliable and unreliable sources.  The chapter concludes with a 

discussion of the analytical results. 

5.1 Examining the Collection of Sources 

Binary similarity measures enable direct pairwise comparisons among sources, 

but do not allow simultaneously consideration of all S sources.  The pairwise 

comparisons of sources and the selected binary similarity measure, φij, can be assembled 

into a binary similarity measure matrix.  From this a dissimilarity matrix can be 

constructed as displayed in Figure V-1.  The dissimilarity between sources i and j, δij, is 

obtained from the obverse of the binary similarity measure, with δij equaling the 

theoretical maximum possible value minus the theoretical minimum value for φ minus φij, 
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which will be nonnegative by construction.  Source comparisons for which the binary 

similarity measure could not be computed are recorded at the minimum value of φij which 

is the maximum value of δij.  This indicates the sources are not confirming the 

information presented by each other.  This procedure transforms the pairwise binary 

similarity scores into nonnegative dissimilarities.  It also ensures that every pairwise 

source combination has a value by placing the theoretical maximum dissimilarity for the 

source pairings for which computation of the binary similarity score was impossible. 

 

  
Figure V-1 Dissimilarity Matrix 

 
 

5.1.1 Multidimensional Scaling (MDS). 

To analyze the amount of consistency in reporting across all sources, 

multidimensional scaling (MDS) can be applied to the dissimilarity matrix to visualize 

the conformity and disagreement of the complete collection of information.  It should be 

noted, however, that this technique does not validate or identify reliable sources, but 

merely displays groupings of commonalities in reporting. 

1 2 3 … S

1 - δ 12 δ 13 … δ 1S

2 δ 21 - δ 23 … δ 2S

3 δ 31 δ 32 - … δ 3S

… … … … - …

S δ S1 δ S2 δ S3 … -

Sources
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5.1.1.1 MDS of Source Comparisons. 

Multidimensional scaling visually groups objects based upon their proximities to 

other objects.  In this instance, objects’ proximities are derived from the binary similarity 

measure as described by the correlation matrix.  Since the proximities are restricted to be 

interval scaled, metric multidimensional scaling can be used, and an exact equation can 

be specified to convert the proximity values in the correlation matrix to the distances 

displayed on the MDS mapping (Dillon & Goldstein, 1984, pp. 108, 126).  The visual 

groupings of the various sources could be informative, once quantitative assessment of 

individual source reliability has been performed.  A notional MDS visualization 

consisting of eight hypothetical social network information sources, denoted S1 through 

S8, is presented in Figure V-2. 

 

 
Figure V-2 Notional MDS Visualization of Social Network Information Sources 
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It is expected that the visual dispersion of sources as depicted through a MDS 

representation will generate clusters of the sources.  Sources reporting similar social 

network data will group together, while sources providing incongruous information will 

be spatially distant in the MDS mapping.  Furthermore, the expectation of significant 

distance between sources in the MDS mapping can be classified as stemming from two 

causal mechanisms. 

5.1.1.2 MDS Distance Interpretation. 

First, it is conceivable, and probably likely, that two network information sources 

are reporting data representing different aspects of the social network, as these sources 

may report non-overlapping network information that may reflect their observations of 

mutually exclusive sets of actors in the network.  This non-overlapping characterization 

of the network, reporting on different components within the social network, may be 

visually represented in the MDS mapping as a significant distance between the reporting 

sources. 

Second, large distances between sources in the MDS visualization may stem from 

sources reporting discordant information.  Sources could be providing data representing 

the relationships among a specific subset of actors in the social network; however, the 

individual source reports may be in direct conflict on the status, present or null, of the 

relationships.  This discordance would be illustrated in the MDS visualization as 

significant distance between incongruent sources.  In terms of source reliability 

assessment, this second case illustrates the utility of applying multidimensional scaling 

against the sources’ reporting patterns. 
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Potentially coupled with statistical clustering techniques, veracity assessments of 

source reliability could be derived from the MDS visualization.  Sources that are 

concordant will group together in the MDS visualization, while discordant sources will 

possess distance between them.  SNA analysts visually identifying sources that are tightly 

clustered can assess that those comprising sources are concordant which may indicate 

source veracity.  Conversely, visually identified isolates sources are not concordant.  

Non-concordance may be a reflection of dissention in reporting or a function of the 

sources’ network perspectives. 

5.1.2 Weighting Source Comparisons. 

High binary similarity measures’ scores reflect the confirmation of dyads or null 

relationships among information sources.  Low binary similarity measures’ scores reflect 

disagreement among the sources.  However, the amount of confirmations or 

disagreements can vary from a single confirmation/disagreement to many.  Thus, as 

displayed in Figure V-3, there are two dimensions to consider when comparing sources: 

the level of concordance/disagreement which is reflected in binary similarity measure 

scores, and the amount of information being compared between the sources. 

Information sources may be reporting on different aspects of the social network, 

with each source presenting its own perspective.  If information sources are reporting on 

the same subgraph structures of the underlying social network, then confirmation and 

dissenting reports between these sources should be considered extensively, and should be 

reflected in a weighting of the sources similarity score.  Conversely, if two information 

sources are reporting on different structural aspects of the social network, then their 
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associated similarity score should be relatively discounted via a low weighting.  This 

process will result in pairwise score weightings characterizing every sources’ network 

perspective. 

The pairwise weightings of sources reflect the social network perspective of the 

two sources.  A high weighting value indicates that the sources are reporting on similar 

substructures of the network.  A low weighting value implies that the sources are 

reporting on different portions of the social network.  The weightings do not provide any 

information regarding the concordance among the sources, but only characterize the 

number of dyads in common between each pair of information sources in the combined 

network.  Thus a low weighting of a pair of sources implies that little inference can be 

drawn between the sources’ reports.  With a high weighting, a pair of sources are 

 
Figure V-3 Similarity Score Weightings 
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reporting on the same aspect of the social network and one would expect a high similarity 

score; if a low similarity score is present the sources are providing conflicting reporting 

indicating one or both are unreliable. 

As each source is likely to provide differing amounts of social network 

information, applying weights to the MDS may better reflect the overall structure present 

in the complete data collection.  In MDS, weights may be incorporated on each pair of 

sources, in this case each δij, (Borg & Groenen, 2005, p. 254).  The nonnegative 

dissimilarity between sources i and j, δij, in this case, is obtained from the obverse of the 

binary similarity measure, ߜ௜௝ ൌ ߮ െ ߮௜௝. 

In this research, weights are derived by the amount of data that can be used for 

confirmation between two sources as a proportion of the total data presented by the two 

sources.  Two sources, Si and Sj, provide social network information involving the set of 

actors, Ni and Nj, respectively.  The weighting, wij, of the relevancy of the corresponding 

δij is then dependent upon the information that is reporting the same aspects of the 

network divided by the combined total amount of data provided by the two sources.  This 

is reflected in Equation (5.1), which is the number of dyads reported by both sources 

divided by the total number of dyads reported by both sources.  This enables sources that 

are reporting information regarding the same relationships to have their agreement or 

disagreement weighted heavier than sources reporting information on different aspects of 

the social network.  It is possible for two sources reporting on completely different 

aspects of the social network to possess a weighting of zero. 

 
௜௝ݓ ൌ

ห ௜ܰ ת ௝ܰห

ห ௜ܰ ׫ ௝ܰห
 (5.1) 
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5.1.3 Weighted MDS. 

MDS maps the δij onto a m-dimensional MDS configuration X according to the 

mapping that minimizes a badness-of-fit measure, normalized stress, denoted σn(X).  The 

distance between each of the points in the mapping, dij(X), are measured in terms of 

Euclidean distance.  Euclidean distance is used to aid analyst interpretation of the 

visualization, where greater spatial distance between objects in the visualization 

represents greater difference between the objects in the original space.  Normalized 

stress, ߪ௡ሺܺሻ, is the proportion of the sum-of-squares of the original δij that is not 

accounted for in the new mapping of the data points and their associated distances taking 

into account the source weightings, ݓ௜௝, as shown in Equation (5.2).  There are several 

available methods and techniques developed for MDS to attempt to minimize normalized 

stress while also achieving dimensionality reduction (Borg & Groenen, 2005, pp. 42, 122, 

248). 

 
௡ሺܺሻߪ ൌ

∑ ௜௝ߜ௜௝൫ݓ െ ݀௜௝ሺܺሻ൯
ଶ

௜ழ௝

∑ ௜௝ߜ௜௝ݓ
ଶ

௜ழ௝
 (5.2) 

Due to incorporating weights, source pairings that are reporting on different 

aspects of the network have no impact on the MDS placement of each other.  Thus, the 

weighted MDS layout is constructed only by sources that possess a positive weighting 

indicating at least some level of complimentary reporting.  Source pairings possessing 

substantial overlap in their reports are more influential in the MDS layout. 

The resulting visualization gives the social network analysts a visual aid depicting 

the sources’ concurrence.  In some cases, the visualization may be sufficient to provide 

clear interpretation of which sources should be included in the social network model.  In 
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more complex cases, the inherent analyst subjectivity of interpreting a visualization may 

create difficulties in assessing the appropriateness of source inclusion.  

5.2 Grouping Sources 

Addressing the subjectivity and the associated induced variabilities in assessing of 

visualization interpretation, a more quantified approach is presented here.  The weighted 

MDS visualization of the sources arranges the sources in accordance with their level of 

concurrence and the amount of information they are reporting.  Cluster analysis is a 

collection of statistical techniques to group objects based on similarity or distance 

measures.  The objective is to group objects into clusters “that display small within-

cluster variation relative to the between-cluster variation (Dillon & Goldstein, 1984, p. 

158).” 

Grouping sources aids the SNA analysts in absorbing the large amount of 

information captured by the similarity scores while taking into accounting weightings 

reflecting the sources’ network perspectives.  Statistical clustering techniques can be 

applied to group sources, so that the SNA analyst can visually inspect source 

concordance.  The clustering is based on the source similarity sources and the score 

weightings, as shown in Figure V-4.  Clustering can be accomplished by visual 

inspection by the SNA analyst, or via statistical clustering techniques to provide a 

quantified approach. 
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Figure V-4 Grouping Sources 

  
 

5.2.1 Fuzzy Clustering. 

Clustering analysis positions each object into a cluster.  Alternatively, fuzzy 

clustering methods scores each object with membership coefficients.  Membership 

coefficients range from 0 to 1, with greater values indicating a stronger preference for a 

cluster.  The membership coefficients for an object will sum to one across all clusters.  

This approach gives more detailed information than traditional “hard” clustering 

techniques.  One method for conducting fuzzy cluster is the FANNY procedure.  

FANNY’s heuristic attempts to minimize the objective function presented in Equation 

(5.3) for objects 1 through n with associated dissimilarities ݀ሺ݅, ݆ሻ, clusters ݒ ൌ 1…݇, 

and ݑ௜௩ is the membership coefficient of object i for cluster v.  The minimization is 
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subject to two constraints: the membership coefficients are nonnegative and sum to one 

for each object (Kaufman & Rousseeuw, 1990, pp. 164-166, 182). 

 
෍

∑ ∑ ௜௩ݑ
ଶ ௝௩ݑ

ଶ ݀ሺ݅, ݆ሻ௡
௝ୀଵ

௡
௜ୀଵ

2∑ ௝௩ݑ
ଶ௡

௝ୀଵ

௞

௩ୀଵ

 (5.3) 

Fuzzy clustering’s output is the membership coefficients of each object.  For this 

methodology, setting the number of clusters to two partitions the sources into two groups: 

social network model inclusion and exclusion.  Two clusters are arbitrary, as the 

weighted MDS visualization may suggest more clusters.  But in the interest of providing 

a quantified consistent methodology, conducting fuzzy clustering for two clusters on the 

sources is conducted in the experimentation. 

5.2.2 Fuzzy Clustering of Weighted MDS. 

Fuzzy clustering could be performed directly on the dissimilarities matrix 

composed of the δij dissimilarities between sources i and j.  The weightings in weighted 

MDS account for sources reporting on different aspects of the social network.  

Performing fuzzy clustering on the dissimilarities matrix would only address the lack of 

confirmatory reporting between sources, but could not ascribe whether this is a result of 

disagreement or a lack of common reporting. 

5.2.3 Membership Coefficient Interpretation. 

The membership coefficients indicate the likelihood that an object belongs to a 

cluster or group.  For source assessment in the case of restricting the fuzzy clustering to 

two clusters, the sources are given likelihoods of belonging to one of two groupings.  The 

clusters have several potential interpretations.  One interpretation involves the grouping 
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reflecting sources that are confirming other group members’ reporting.  If that occurs, the 

remaining cluster could reflect sources whose reporting is unconfirmed or discredited.  It 

could also reflect a grouping of sources who are reporting on different aspects of the 

social network. 

The fuzzy clustering technique produces membership coefficients based on the 

weighted MDS of the source similarity scores and their associated score weightings.  

These membership coefficients can be interpreted as source likelihoods of reliability.  In 

the case of non-statistical based source clustering, the grouping of the sources indicates 

their likelihood of reliability in a qualitative manner.  Sources grouped in the same cluster 

are interpreted as reporting concordant information on the same social network aspects.  

Sources grouped in difference clusters are interpreted as either reporting discordant 

information or on different aspects of the social network.  An examination of the pairwise 

source similarity scores and weightings between sources located in different clusters can 

quickly identify if their separation is a function of their network perspective or 

disagreement in information reporting. 

The fuzzy clustering membership coefficients can also be considered a threshold.  

If a SNA analyst determines one of the clusters to contain reliable sources, the 

membership coefficients for that group are a threshold for inclusion into being considered 

reliable.  Dependent upon analytical considerations, such as operational risk that result 

from the SNA conclusions, the SNA analyst can specify an appropriate threshold.  In the 

experimentation conducted in the research, utilizing the AUC as the response variable in 

effect examines every potential threshold that could be selected by an SNA analyst.  This 
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allows the methodology’s performance to be tested with every possible scenario of SNA 

analyst specified thresholds. 

5.3 Methodology Overview 

The methodology begins with social network information sources being compared 

in a pairwise manner.  These pairwise source comparisons are conducted by examining 

the dyads they have in common and noting agreement and disagreement on the existence 

of relationships and null relationships.  This is distilled into source similarity scores 

which are based on binary similarity measures, following the procedures in Section 5.1.  

A methodology for selecting binary similarity measures was developed and described in 

Chapter IV.  

The sources’ network perspective was examined via a source reporting weighting 

function as described in Section 5.1.2.  The source similarity scores and score weightings 

are transformed into a small dimension space via weighted MDS as described in Section 

5.1.3.  The weighted MDS also serves as a visual depiction of the source reporting and 

concordance for SNA analysts.  The information sources are then grouped based upon 

their concordance and perspective.  The grouping can be accomplished by visual 

inspection of the weighted MDS, but a quantified approach was developed here based on 

fuzzy clustering of the weighted MDS and described in Section 5.2.   The grouping of the 

sources enables identification of concordant sources, discordant sources, and sources 

reporting unique information on aspects of the social network.  These groupings allow the 

SNA analysts to draw conclusions on individual information sources’ likelihood of 

reliability.  Utilizing the fuzzy clustering’s membership coefficients, this likelihood is 
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quantifiable.  Figure V-5 provides an overview of the methodology, noting the techniques 

used as each step. 

 

 
Figure V-5 Overall Methodology Framework 

 
 

5.4 Trusted Sources 

In some instances, a source is known to be reliable and accurate in the 

information it reports.  These trusted sources can come in several varieties in regards to 

intelligence collection on dark networks.  Technical means can passively observe a dark 

network organization’s activities and communications.  Human agents can insert 

themselves into the organization or cultivate informants; both provide an active means of 

determining the organization’s structure, participating actors, and relationships.  
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Regardless of how the information is collected, its associated reliability is assumed to be 

accurate and free of deception; therefore, trusted sources are used to assist in assessing 

other sources of information via confirmation or contradiction. 

Some sources’ nature eliminates, or at a minimum diminishes, the need of 

assessing the source’s accuracy.  Sources such as signals or communications intelligence 

provide accurate reporting, although still only a specific perspective on the networks.  

Signals intelligence may confirm communication occurring between members of the 

network, but is limited to electronic communication and probably will not accurately 

capture face-to-face interactions.  Trusted sources, such as undercover agents, can be 

assumed to provide accurate, reliable information.  These bona fide sources will not need 

to be assessed for accuracy, but instead can provide a basis for the other sources to be 

compared against. 

5.4.1 COMINT. 

Communications intelligence (COMINT), utilizing monitoring of a target’s 

electronic communications, generates data that can be construed as reliable.  Assuming 

the adversary is unaware which actors, conversations, and communication devices are 

being monitored, inhibiting collection can only be achieved by broad measures, such as 

having all members avoid usage of specific types of electronic communication devices.  

The adversary can complicate COMINT collection by using multiple means of 

communication creating difficulties in accurately recreating the entire communication 

network and associated patterns.  However, information collection via COMINT in either 

of these scenarios is still unlikely to be inaccurate, unless opposed by an extensive denial 
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and deception campaign.  COMINT derived social network data has the advantage that 

the communications are known to occur as Actor A talked with Actor B and the 

relationship existence is not in question.  Difficulties can arise in actor attribution, and 

identifying all actors in intercepted communications. 

COMINT is unlikely to generate random observations of the social network, but 

more likely will be similar to the snowball data collection technique delivering 

observations on local structures within the social network.  As an actor is targeted by 

COMINT collection means, the number of communication devices associated with 

individuals in the network grows.  Monitoring a known dark network actor’s phone 

identifies the phone numbers of those they call, creating an ever growing network of 

communication devices that can be surveyed.  However, a potential drawback is the 

incorrect assessment of actor participation in the dark network based on irrelevant 

communications.  For example, a dark network actor may regularly communicate with 

family members who have no affiliation with the organization.  COMINT may not be 

able to discern the nature of the relationship, but merely that communication occurs and 

with which frequency and associated pattern. 

5.4.2 HUMINT. 

Human intelligence (HUMINT) sources can also be considered trusted under 

certain circumstances.  The HUMINT asset employed may possess a substantial history 

of reporting or be an agent of government forces purposely emplaced in the dark 

network.  Other than these special cases, informants providing social network data on a 
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dark network organization may report accurate, erroneous, or deceptive information.  The 

difficulty lies in discerning an untested HUMINT source’s reliability. 

5.4.3 Modeling Trusted Sources. 

Trusted sources can be modeled using any of the reliable source generation 

techniques.  The only difference between a trusted source and a reliable source is that a 

trusted source is known and assumed to provide accurate information, while a reliable 

source’s veracity must be determined.  Thus, sources that are being confirmed as 

concordant with trusted sources are assessed as reliable, and conversely sources whose 

information is being discredited by trusted sources are assessed as unreliable.  Applying 

the methodology, information sources that possess high membership coefficients into 

groupings that contain trusted sources can be inferred to be reliable sources. 

5.5 Example 

This section provides an example of the methodology applied to a problem to 

demonstrate the individual steps of the methodology.  The problem is pulled from the 

experimentation (details are provided in Section 3.3) and is obtained from the second 

replication of the full factorial design point with all factors set at -1, i.e. run “1”.  For this 

data, the true underlying social network is composed of 200 actors.  Ten sources reported 

information on the network with 6 sources providing reliable information and 4 sources 

providing unreliable information. 

5.5.1 Source Reporting Data. 

The reliable sources are denoted R1 through R6 and the unreliable sources are 

denoted U1 through U4.  The sources’ reporting is presented in Table V-1 and Table V-2 
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as edge lists.  Actors in the network are uniquely identified by a number ranging from 1 

to 200 in this case.  As can be seen in Table V-1 and Table V-2, each source is reporting 

on different relationships in the network as well as reporting varying amounts of 

information. 

 

Table V-1 Reliable Sources' Edge Lists 
R1 R2 R3 R4 R5 R6 

127 190 55 183 77 135 148 180 148 180 71 155 
71 139 55 105 149 151 155 190 39 63 38 71 
20 45 17 190 28 151 28 151 71 116 133 140 
37 71 15 190 78 182 129 190 53 112 23 145 
44 142 90 103 65 158 55 139 23 115 60 82 
19 172 52 55 158 190 23 145 6 190 53 112 
155 166 107 162 55 134 155 166 4 49 14 112 
60 82 51 70 44 107 53 112 58 190 165 170 
158 194 48 75 71 190 5 11 107 164 112 167 
7 156 64 164 7 73 68 190 51 190 155 184 

135 190 47 155 107 190 15 190 43 79 91 155 
7 170 46 59 112 173 84 105 77 135 112 190 
9 107 65 158 1 107 10 158 64 190 4 74 

107 198 133 140 107 164 110 190 29 190 7 41 
190 191 67 150 19 112 51 70 67 150 109 151 
24 129 112 167 51 190 190 195 60 82 51 71 
23 74 7 74 12 143 69 190 126 133 51 70 
48 116 135 190 185 190 23 195 176 196 43 117 

142 159 21 180 44 62 107 129 48 118 
98 155 44 82 21 161 107 121 71 95 
110 132 48 113 142 159 35 90 
32 93 43 118 10 158
190 195 110 190
34 155 112 155
74 112 23 74 
44 82 
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Table V-2 Unreliable Sources Edge Lists 
U1 U2 U3 U4 

181 197 63 152 140 158 72 194
13 109 79 80 59 165 63 93 
24 169 148 185 32 154 132 158
16 29 8 171 46 171 30 102
13 16 61 80 45 67 75 179
170 189 114 116 6 142 102 132
13 18 104 124 82 89 6 156
38 57 21 150 97 106 101 132
2 119 60 107 67 165 85 132
2 61 97 121 67 137 100 173
2 48 34 179 41 125 21 145
72 149 35 79 68 176 56 150
45 74 79 198 36 145 33 136
44 52 32 63 29 165 133 145
62 84 152 167 59 143 71 166
63 165 37 152 140 171 45 101
64 166 66 68 119 140 69 156
13 163 50 108 33 186 92 145
2 191 84 123 84 183 12 145
2 159 28 185 122 153 13 145
13 124 84 125 85 94 105 135
13 75 65 139 31 140 105 145

94 144 124 145 145 187
94 157 82 173 2 147
13 180 33 125 34 105
14 107 10 149
107 115 67 198
93 158 2 129
107 121 2 76 
4 170 4 53 

107 144 166 192
64 82 3 72 
170 185 2 185
79 131 74 189
181 189 32 105
79 120
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5.5.2 Source Comparisons. 

Next, the comparison matrices were computed as described in Section 2.8 and 

then summarized by a binary similarity measure for each pairwise combination.  Cohen’s 

Kappa was the binary similarity measure employed.  Details of Cohen’s Kappa are 

provided in Section 5.6.1.  The pairwise Cohen’s Kappa scores are provided in Table 

V-3. 

 

Table V-3 Cohen's Kappa Scores for the Example 
R1 R2 R3 R4 R5 R6 U1 U2 U3 U4 

R1 0 0.87 0.46 0.97 1.05 0.87 0.50 0.46 0.00 0.45 
R2 0.87 0 0.87 1.14 0.80 1.15 0.45 0.45 0.48 0.50 
R3 0.46 0.87 0 0.88 1.15 0.43 0.00 0.45 0.50 0.00 
R4 0.97 1.14 0.88 0 1.13 1.22 0.30 0.50 0.50 0.50 
R5 1.05 0.80 1.15 1.13 0 0.82 0.00 0.76 0.48 0.00 
R6 0.87 1.15 0.43 1.22 0.82 0 0.50 0.45 0.46 0.50 
U1 0.50 0.45 0.00 0.30 0.00 0.50 0 0.46 0.46 0.50 
U2 0.46 0.45 0.45 0.50 0.76 0.45 0.46 0 0.50 0.44 
U3 0.00 0.48 0.50 0.50 0.48 0.46 0.46 0.50 0 0.50 
U4 0.45 0.50 0.00 0.50 0.00 0.50 0.50 0.44 0.50 0 

 
 

Cohen’s Kappa’s maximum possible value is 1.5, and the dissimilarity matrix was 

constructed by subtracting the Cohen’s Kappa score from its maximum possible value 

(Fleiss, Levin, & Paik, 2003, p. 603).   The dissimilarity matrix is displayed in Table V-4.  

A dissimilarity score of 1.5 indicates either maximum disagreement on provided 

information or that the sources reported data on completely different aspects of the 

networks.  Excluding the dual potential interpretations of maximum possible scores of 

1.5, high dissimilarity scores indicates disagreement between sources. 
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Table V-4 Dissimilarity Scores for the Example 
R1 R2 R3 R4 R5 R6 U1 U2 U3 U4 

R1 0 0.63 1.04 0.53 0.45 0.63 1.00 1.04 1.50 1.05 
R2 0.63 0 0.63 0.36 0.70 0.35 1.05 1.05 1.02 1.00 
R3 1.04 0.63 0 0.62 0.35 1.07 1.50 1.05 1.00 1.50 
R4 0.53 0.36 0.62 0 0.37 0.28 1.20 1.00 1.00 1.00 
R5 0.45 0.70 0.35 0.37 0 0.68 1.50 0.74 1.02 1.50 
R6 0.63 0.35 1.07 0.28 0.68 0 1.00 1.05 1.04 1.00 
U1 1.00 1.05 1.50 1.20 1.50 1.00 0 1.04 1.04 1.00 
U2 1.04 1.05 1.05 1.00 0.74 1.05 1.04 0 1.00 1.06 
U3 1.50 1.02 1.00 1.00 1.02 1.04 1.04 1.00 0 1.00 
U4 1.05 1.00 1.50 1.00 1.50 1.00 1.00 1.06 1.00 0 

 
 

The source comparison weightings were computed using Equation (5.1) as 

described in Section 5.1.2 and are provided in Table V-5.  The weightings range from 

zero to one with large scores indicating reporting on the same aspects of the network.  As 

can be seen by examining the R1-U3 comparison, the weight is zero, indicating that the 

two sources’ reporting did not contain any dyads in common.  This, in effect, nullifies the 

1.5 maximum dissimilarity score in Table V-4 when the weighted MDS is applied.  

Following the same logic, sources R1 through R6 possess relatively strong source 

weightings among themselves, indicating they are reporting on the same substructures in 

the social network.  Conversely, U1 through U4 possess relatively low source weightings 

which is indicative or reporting unique information.   
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Table V-5 Source Weightings Matrix for the Example 
R1 R2 R3 R4 R5 R6 U1 U2 U3 U4 

R1 0 0.17 0.19 0.15 0.22 0.19 0.14 0.12 0.00 0.12 
R2 0.17 0 0.21 0.19 0.25 0.21 0.10 0.12 0.13 0.13 
R3 0.19 0.21 0 0.19 0.19 0.18 0.00 0.10 0.08 0.00 
R4 0.15 0.19 0.19 0 0.20 0.16 0.07 0.11 0.12 0.10 
R5 0.22 0.25 0.19 0.20 0 0.21 0.00 0.18 0.15 0.00 
R6 0.19 0.21 0.18 0.16 0.21 0 0.10 0.09 0.10 0.05 
U1 0.14 0.10 0.00 0.07 0.00 0.10 0 0.12 0.16 0.11 
U2 0.12 0.12 0.10 0.11 0.18 0.09 0.12 0 0.15 0.10 
U3 0.00 0.13 0.08 0.12 0.15 0.10 0.16 0.15 0 0.14 
U4 0.12 0.13 0.00 0.10 0.00 0.05 0.11 0.10 0.14 0 

 

Source comparisons with large dissimilarity scores and large weightings, such as 

U1’s and U3’s values in Table V-4 and Table V-5, indicate substantial disagreement on 

the social network.  Conversely, small dissimilarity scores and large weightings, 

exemplified by the R2 and R3 source comparison, indicate substantial agreement on the 

social network’s structure.  Comparisons possessing small weightings imply that little 

inference can be drawn from the pairwise comparison as the sources are reporting on 

different aspects of the social network.  Visual inspection of the dissimilarity and source 

weightings matrices by SNA analysts can prove difficult if facing numerous information 

sources.  Utilizing weighted MDS to summarize the information contained within these 

matrices visually is presented next. 

5.5.3 Weighted MDS. 

The weighted MDS visualization is displayed in Figure V-6 with an aspect ratio 

of one, generated as described in Section 5.1.3.  This analyst aid indicates that the sources 

denoted R1 through R6 appear to be confirming each other’s reporting, while sources U1 

through U4 are either unconfirmed or discordant with the other sources.  Examining the 
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dissimilarity scores in Table V-4 shows that U1 through U4 have relatively high scores 

which results from conflicting information.  Examining the weightings in Table V-5, U1 

through U4, the weightings are low indication that the information U1 through U4 

provide is unconfirmed by other sources. 

 

 
Figure V-6 Weighted MDS Visualization of Sources for the Example 

 
 

As weighted MDS attempts to minimize an objective function of total normalized 

stress of the graph, given by Equation (5.2), one can examine every sources’ contribution 

to the total normalized stress.  Figure V-7 displays the sorted stress contributions by each 

source.  As can be seen, sources U1 through U5 contribute more stress than the other 

sources for their placement on the weighted MDS visualization.  The stress is a reflection 

of the difficulty of placing the source on the visualization as it is every sources’ 
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contribution to the objective function of the weighted MDS, as shown in Equation (5.2).    

Sources possess high stress as a result of inconsistent similarity scores across all of their 

source pairings.  Inconsistent similarity scores occur when a source possesses a high 

similarity score with one source and a low similarity score with another source, but those 

two sources possess a high or low similarity score.  If this inconsistency occurs 

repeatedly across all source pairs, it is a potential indication of source unreliability. 

 

 
Figure V-7 Source Stress Contributions for the Example 
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5.5.4 Fuzzy Clustering. 

The fuzzy clustering membership coefficients, as described in Section 5.2.3 are 

presented in Table V-6.  Analogous to the weighted MDS visualization, the membership 

coefficients present the groupings of the sources.  Table V-6 shows sources R1 through 

R5 with strong preferences to Group 1.  R6’s and U2’s membership coefficients are close 

to 0.5 and could indicate placement in either group.  U1, U3, and U4 indicate strong 

preference for Group 2.  Please note, that the group number is incidental, of interest, is 

which information sources are being placed together in the same groupings. 

 

Table V-6 Fuzzy Clustering Membership Coefficients for the Example 
Group 1 Group 2 

R1 0.68 0.32 
R2 0.66 0.34 
R3 0.70 0.30 
R4 0.80 0.20 
R5 0.79 0.21 
R6 0.55 0.45 
U1 0.24 0.76 
U2 0.51 0.49 
U3 0.32 0.68 
U4 0.32 0.68 

 
 

The fuzzy clustering membership coefficients can be interpreted as a threshold for 

inclusion in the social network model.  As Group 1 is internally consistent among its 

members, one can construct a ROC curve by using the membership coefficient for Group 

1 as the parameter for inclusion.  The ROC curve is displayed in Figure V-8 and its 

associated AUC is one.  The AUC of one indicates that no matter where the threshold is 

specified, no unreliable source will be included in the social network model while a 
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reliable source is excluded.  This means the methodology has associated all of the reliable 

sources with higher membership coefficients and unreliable sources possess lower 

membership coefficients.  In other words, the reliable source with the smallest 

membership coefficient is still greater than the unreliable source with the largest 

membership coefficient.  Applying the methodology developed in this dissertation does 

not always result in the trivial ROC curve as in Figure V-8 which indicates perfect 

classification performance. 

 

 
Figure V-8 ROC Curve for the Example 
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5.5.5 Analytical Conclusions for the Example. 

Examining the fuzzy clustering membership coefficients, an analyst can derive 

that R1 through R5 are reporting different network information than U1, U3 and U4.  By 

extending the analysis to consider the dissimilarity scores and the weightings, depicted by 

the weighted MDS visualization, the analyst can draw several conclusions. R1 through 

R5 are providing information that is confirmed by each other, inferable from their larger 

membership coefficients in Table V-6 and their close proximity to each other in Figure 

V-6.  U1, U3 and U4 are presenting information that is generally unconfirmed by other 

sources, though there are disagreements with the other sources when confirmation is 

possible.  This inference is from observing the low membership coefficients for Group 1 

in Table V-6 and the large distances among U1, U3, and U4 in Figure V-6. 

U2 is more difficult to assess than the other reporting sources.  U2 possesses a 

membership coefficient near 0.5, in this case a 0.51, indicating it could be assigned to 

either group by the fuzzy clustering.  What is informative is U2’s placement on the 

weighted MDS visualization in Figure V-6, though it is susceptible to analyst 

interpretation.  U2 appears to be far from all other sources indicating that its information 

is not confirmed.  It closest source is U3, which has at this point already been identified 

as an unreliable source.  Examining U2’s dissimilarity scores and weightings in Table 

V-4 and Table V-5, respectively, U2 has relatively high dissimilarity scores and moderate 

weightings.  This combination reflects the other information sources are reporting on the 

same network substructures to an extent, but they disagree from U2’s reporting.  U2 

would most likely be assessed by the SNA analysts as an unreliable source.  Depending 

upon the acceptable level of operational risk, U2’s reported information’s inclusion may 
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be based on the impact it has on the combined social network model and the specific 

SNA techniques being applied.  Non-quantified information and, of course, SME 

judgment can be applied at this point to make the final determination. 

5.5.6 Trusted Source Extension. 

Extending the example to include a trusted source, somewhat simplifies the 

analysis.  If source R4 is a trusted source, the SNA analyst can use that information to 

draw conclusions regarding information sources that are concordant with R4.  Examining 

the weighted MDS in Figure V-6, information sources in close proximity to R4 can be 

assessed as reliable.  Under this paradigm, sources R1, R2, R5, R6 and possible R3 would 

be assessed as reliable sources due to their concordance to trusted source R4.  This in 

effect, uses trusted sources to vet other sources. 

If U1 is a trusted source, the methodology enables an analytical interpretation that 

might be overlooked by SNA analysts not employing the methodology described here.  

Due to the large spatial distances between U1, the trusted source, and all of the other 

information sources, one could quickly draw the conclusion that the other information 

sources are either unreliable or reporting on different aspects of the social network.  

Discerning the clustering of R1, R2, R4, R5, and R6, an analyst could determine that 

despite the lack of reporting confirmation from the trusted source, U1, these clustered 

sources are confirming each other’s reports while reporting on different substructures of 

the underlying social network.  Since, the trusted source’s reports are not being 

confirmed by any other sources, it may be an indication that the trusted source has been 

compromised, is being spoofed, or is collecting information based on a deception 
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operation.  Regardless, in this example, employing the methodology enabled the SNA 

analyst to quickly and quantitatively assess the information sources’ reliability and easily 

identify sources requiring further examination. 

5.6 Initial Examination of Performance Measures 

At this point the methodology has been presented and an example problem was 

examined in detail.  To evaluate the efficacy of the methodology developed in this 

research, it will be tested according the design of experiments (DOE) described in 

Section 3.3.  The DOE examines the methodology’s performance under various 

conditions that are similar to real world problems faced by SNA analysts.  The testing of 

the methodology begins with examining the seven binary similarity measures deemed 

suitabile for the source assessment application identified in Section 4.3.3. 

The seven binary similarity measures, selected using the methodology 

implemented in Chapter IV, were applied to the data generated according to the DOE 

specified parameterization.  The seven selected binary similarity measures are: Cohen’s 

Kappa, Gini coefficient, Hamann, Dispersion, Peirce-III, Anderberg, and Goodman & 

Kruskal’s Maximum formula.  Among the seven measures, there are substantial 

differences in performance.  The Area Under the Curve (AUC) generated from the fuzzy 

clustering membership coefficients was utilized as a performance measure.  The 

algorithm was applied for all seven selected binary similarity measures and their 

corresponding AUCs were computed for all runs of the dataset. 

Table V-7 provides descriptive statistics on the AUC values of the seven 

measures which were calculable in all cases.  As evident in Figure V-9, several of the 
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measures exhibit substantial differences between their mean and their median, AUC 

values, represented by filled points and by the traditional box plot median line, 

respectively.  Cohen’s Kappa displayed superior performance in comparison to the other 

six binary similarity measures utilized in this experiment, with its median and mean 

bother showing substantially better performance than the other measures.  The worst case 

observed using Cohen’s Kappa in the methodology exhibiting better performance than 

25% of the tests using the other measures.  The first quantile of the AUC values 

generated from applying the methodology with Cohen’s Kappa exceeds the third quantile 

of each of the other six binary similarity measures—the 25th percentile of the 

methodology executed using Cohen’s Kappa exceeded 75% of the test results utilizing 

the other six binary similarity measures. 

 

Table V-7 Seven Measures’ AUC Values Descriptive Statistics 
Cohen Gini Hamann Disper. Peirce Anderberg GK Max 

Min. 0.563 0.50 0.50 0.50 0.50 0.50 0.50 
1st Quart. 0.833 0.548 0.542 0.548 0.535 0.519 0.507 

Median 0.962 0.625 0.596 0.590 0.572 0.543 0.523 
Mean 0.921 0.647 0.632 0.628 0.607 0.587 0.540 

3rd Quart. 0.995 0.729 0.689 0.674 0.632 0.609 0.552 
Max. 1.0 1.0 1.0 1.0 0.984 1.0 0.938 

Disper. = Dispersion; Peirce = Peirce-III;
GK Max = Goodman & Kruskal Maximum
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Figure V-9 Boxplots of 7 Similarity Measures' AUC Values 

 
 

5.6.1 Cohen’s Kappa. 

One method of comparing sources’ dyad nominations is interrater reliability.  

Several indices of interrater reliability have been created, as partially enumerated in 

Table V-8, though a common ratio has taken prominence in usage.  Cohen’s Kappa, 

Equation (5.4), utilizes a comparison of a given index’s value, I0, compared against the 

index value expected by chance selection by both parties, Ie.  Cohen’s Kappa, ̂ߢ, is equal 

to one in the case of complete agreement among the two sources, and will be greater than 

or equal to zero if the observed agreement is greater than expected chance agreement.  In 

the case of the observed agreement being less than the expected chance agreement, 

Cohen’s Kappa will be negative, bounded below at negative one, though in some cases 

the minimum obtainable values will be between negative one and zero. (Fleiss, Levin, & 

Paik, 2003, pp. 603-604). 
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For most purposes, values greater than 0.75 or so may be taken to 
represent excellent agreement beyond chance, values below 0.40 or so 
may be taken to represent poor agreement beyond chance, and values 
between 0.40 and 0.75 may be taken to represent fair to good agreement 
beyond chance.  (Fleiss, Levin, & Paik, 2003, p. 604) 

 

 
ߢ̂ ൌ

଴ܫ െ ௘ܫ
1 െ ௘ܫ

 (5.4) 

A number of indices of interrater reliability are available for computation of 

Cohen’s Kappa based upon the comparison matrix as depicted in Table II-14.  

Conveniently, the commonly used indices displayed in Table V-8 all reduce to the same 

value of Cohen’s Kappa as identified in Equation (5.5) (Fleiss, Levin, & Paik, 2003, p. 

603). 

 

Table V-8 Some Indices of Interrater Reliability 
Interrater Reliability Index Formula 

Overall Proportion of Agreement ݌଴ ൌ ܽ ൅ ݀ 
Proportion of Specific Agreement 
(ignoring d) ݌௦ ൌ

2ܽ
2ܽ ൅ ܾ ൅ ܿ

 

Proportion of Specific Agreement 
(ignoring a) ݌௦ᇱ ൌ

2݀
2ܽ ൅ ܾ ൅ ܿ

 

Averaged Proportion of Specific Agreement 
(Rogot and Goldberg [1966]) ܣ ൌ

1
2
ሺ݌௦ ൅  ௦ᇱሻ݌

Goodman’s and Kruskal’s Index of 
Agreement (1954) ߣ௥ ൌ

2ܽ െ ሺܾ ൅ ܿሻ

2ܽ ൅ ሺܾ ൅ ܿሻ
 

(Fleiss, Levin, & Paik, 2003, pp. 599-602) 
  

 

 
ߢ̂ ൌ

2ሺܽ݀ െ ܾܿሻ
ሺܽ ൅ ܾሻሺܾ ൅ ݀ሻ ൅ ሺܿ ൅ ݀ሻሺܽ ൅ ܿሻ

 (5.5) 
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5.7 Examining the DOE Factors. 

The chosen experimental design allows for analysis of the four experimental 

factors impact upon the methodology’s performance in terms of AUC.  The four factors, 

labeled A through D, and there associated coded values are presented in Table V-9.  First, 

as described in Section 3.4.1, the response variable, AUC, needs to be transformed so the 

regression equation’s predicted value falls within the [0.5, 1.0] range. 

 

Table V-9 DOE Factors 
Factors -1 1 

Network Size A 200 1,500
# of Sources

(% network size)
B 5% 10% 

% Reliable 
Sources

C 60% 80% 

Sampling % D 10% 20% 
 

 

5.7.1 Analysis of Variance (ANOVA). 

  The initial regression model incorporates the four factors’ main effects and all 

interaction terms.  The resulting model, Equation (5.6), whose ANOVA table is displayed 

in Table V-10, computed via R (2011), possesses a R2 of 0.608 and an adjusted-R2 of 

0.590. 

 

y = 2.85 - 0.53A - 0.22B - 1.82C + 0.85D + 0.21A:B - 0.12A:C  
       - 0.02B:C - 0.04A:D - 0.07B:D - 0.43C:D + 0.05A:B:C + 0.03A:B:D 
       - 0.35A:C:D - 0.08B:C:D + 0.08A:B:C:D 

(5.6) 

 
 



www.manaraa.com

 

V-34 

 

Table V-10 DOE Factors Full Model ANOVA 
  DoF Sum Sq Mean Sq F score p-value 

A 1 74.95 74.95 35.12 0.000 
B 1 14.81 14.81 6.94 0.009 
C 1 760.85 760.85 356.54 0.000 
D 1 155.39 155.39 72.82 0.000 

A:B 1 6.53 6.53 3.06 0.081 
A:C 1 3.22 3.22 1.51 0.220 
B:C 1 0.35 0.35 0.16 0.687 
A:D 1 0.55 0.55 0.26 0.612 
B:D 1 1.05 1.05 0.49 0.483 
C:D 1 32.64 32.64 15.30 0.000 

A:B:C 1 0.47 0.47 0.22 0.640 
A:B:D 1 0.12 0.12 0.06 0.809 
A:C:D 1 19.91 19.91 9.33 0.002 
B:C:D 1 0.93 0.93 0.44 0.510 

A:B:C:D 1 0.96 0.96 0.45 0.503 
Error 324 691.41 2.13 

R2 = 0.608 adj. R2 = 0.590 
 

 

A reduced model is created by using backwards stepwise regression based on 

Akaike’s Information Criteria (AIC), presented in Equation (5.7) with p representing the 

number of parameters (Crawley, 2007, pp. 353-354).  Variables are removed that 

improve the overall model’s AIC, while considering model hierarchy by keeping 

variables’ lower order terms if their higher order interactions are currently in the model. 

ܥܫܣ  ൌ  െ2ሺlog‐likelihoodሻ ൅ 2ሺ݌ ൅ 1ሻ (5.7) 

The reduced model contained all four main effects, five of the six possible two-

factor interactions, and two of the four possible three-factor interactions, as shown in 

Table V-11.  The four-factor interaction was not present in the reduced model.  The 

reduced model resulted in a R2 of 0.606 and an adjusted-R2 of 0.595, and since the 
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independent variables are orthogonal in a full factorial design, the coefficients are the 

same as in Equation (5.6).  However, for both the full model and reduced models based 

on the initial DOE factors, the normality plots of the residuals show significant departures 

from normality. 

 

Table V-11 DOE Factors Reduced Model ANOVA 
  DoF Sum Sq Mean Sq F score p-value 

A 1 74.95 74.95 35.59 0.000 
B 1 14.81 14.81 7.03 0.008 
C 1 760.85 760.85 361.27 0.000 
D 1 155.39 155.39 73.78 0.000 

A:B 1 6.53 6.53 3.10 0.079 
A:C 1 3.22 3.22 1.53 0.217 
A:D 1 0.59 0.59 0.28 0.598 
C:D 1 32.95 32.95 15.65 0.000 

A:C:D 1 19.86 19.86 9.43 0.002 
Error 330 694.99 2.11    

R2 = 0.606 adj. R2 = 0.595 
 

5.7.2 Analysis of Covariance (ANCOVA). 

The poor fit, in terms of error distribution assumptions, of the linear regression 

models based on the four factors comprising the DOE, suggests other variables are 

necessary to explain the methodology’s performance. 

5.7.2.1 Concomitant Variables. 

Several SNA network measures were investigated for potential inclusion as 

concomitant variables into the regression model: density, diameter, mean path length 

(MeanPath), characteristic path length (CharPath), average clustering coefficient 

(AvgCC), degree correlation (DegreeCorr), and the degree distribution’s power-law 
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exponent (alpha).  These SNA measures were selected due to their common appearance 

and familiarity within the SNA literature.  These measures were computed on all of the 

graphs representing the true underlying social networks used in the experimentation. 

As with linear regression, multicollinearity can adversely affect ANCOVA 

results.  An advantage of using the DOE approach, the factors represented in the full 

factorial design, center points, and space filling design are near-orthogonal by design; 

therefore, multicollinearity is not a concern among them.  However, it is necessary to 

check the concomitant variables for multicollinearity.  Several of the variables are 

expected be correlated with others.  Density’s definition is related to the number of nodes 

present in the graph, and thus can be eliminated from consideration due to correlation 

with number of nodes factor.  The mean path length and the characteristic path length 

differ only slightly in definition, by use of a grand average as opposed to a median.  Thus, 

the remaining concomitant variables are plotted pairwise, Figure V-10, and their 

corresponding correlations are computed, Table V-12, to investigate if multicollinearity is 

present. 

As demonstrated by Figure V-10 and Table V-12, strong multicollinearity exists 

among several variables.  As expected, the mean path length and the characteristic path 

length exhibit strong correlation, and both are strongly negatively correlated with the 

graph diameter.  Thus, only one of these variables is required.  For this analysis the mean 

path length was selected as it possesses the strongest positive and negative correlation, 

with the characteristic path length and the diameter, respectively.  Additionally, the 

average clustering coefficient is eliminated as a potential concomitant variable as it is 

strongly correlated with the mean path length.  The degree correlation is moderately 
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negatively correlated with the mean path length, but remained in this analysis as a 

concomitant variable.  The examination of seven commonly applied SNA network 

measures resulted in only three measures being utilized in the ANCOVA: mean path 

length, degree correlation and the degree distribution’s power-law exponent. 

 

 
Figure V-10 Concomitant Variables Plot 

 
 

Table V-12 Concomitant Variables Correlation 
Diameter MeanPath CharPath AvgCC DegreeCorr alpha 

Diameter 1.0 -0.907 -0.876 -0.738 0.677 0.346 
MeanPath -0.907 1.0 0.978 0.900 -0.757 -0.248 
CharPath -0.876 0.978 1.0 0.907 -0.747 -0.249 

AvgCC -0.738 0.900 0.907 1.0 -0.767 -0.177 
DegreeCorr 0.677 -0.757 -0.747 -0.767 1.0 0.097 

alpha 0.346 -0.248 -0.249 -0.177 0.097 1.0 
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5.7.2.2 ANCOVA Results. 

The concomitant variables were all transformed to design space, i.e. centered and 

scaled, and the resultant ANCOVA model possessed a R2 of 0.868 and adjusted-R2 of 

0.790, displaying substantial improvement of the ANOVA model’s R2 of 0.610 and 

adjusted-R2 of 0.592.  Performing backwards stepwise regression based on AIC, as was 

done for the ANOVA model, the reduced ANCOVA model only the single seven-factor 

and several six-factor interaction terms containing all factors and all concomitant 

variables.  Introduction of the concomitant variables, substantially improved the 

explanatory power of the model, implying the graph to graph variation even with design 

runs has significant impact upon the methodology’s performance. 

5.7.2.3 ANCOVA Linear Regression Model Issues. 

Despite the positive improvements in R2 and adjusted-R2 by incorporating the 

concomitant variables into the model, diagnostic analysis of the ANCOVA linear model 

expresses major concerns of assumption validity.  The normality plot of the residuals, 

Figure V-11, appears to significantly depart from a normal distribution.  The standardized 

residuals were tested for normalilty, with a preset critical p-value of 0.05, using the 

Anderson-Darling test (Anderson & Darling, 1952) available in the R nortest package 

(Gross, 2006), which resulted in an A test statistic value of 5.025 and an associated p-

value of 1.9 x 10-12, and the Shapiro-Wilk test (Shapiro & Wilk, 1965), which generated a 

W statistic of 0.942 and an associated p-value of 2.8 x 10-10.  This violates the assumption 

that the error terms are distributed on a standard normal distribution, ߝ~ܰሺ0,  .ଶሻߪ
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Figure V-11 Residuals Normal Plot from Full ANCOVA model 

 
 

Additionally, there are concerns of the linear regression homoscedasticity 

assumption being violated.  Figure V-12 depicts the fitted values versus the residuals 

illustrating that the variance does not appear to be constant.  Figure V-12 also displays 

the presence of outliers, noted by the large residual deviations which are greater than 

three standard deviations. 
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Figure V-12 Fitted Values vs. Residuals 

 
 

5.7.2.4 Box-Cox Method. 

The Box-Cox method was applied to attempt to correct the normality deficiencies 

and the heteroscedasticity (Montgomery, Peck, & Vining, 2006, p. 171).  The response 

variable was examined across 100 points for the domain of [-2, 2] which determined the 

optimal value maximizing the log-likelihood function to be 1.43.  This implies 

transforming the response variable according to Equations (5.8) and (5.9) produces the 

full model with greatest likelihood of explaining the data (Montgomery, Peck, & Vining, 

2006, p. 171). 

 
ሺఒሻݕ ൌ ൝

௬ഊିଵ

ఒ௬ሶ ഊషభ
, ߣ ് 0

ሶݕ ln ݕ , ߣ ൌ 0
  (5.8) 

ሶݕ  ൌ lnିଵ ൬1 ݊∑ ln ௜௡ݕ
௜ୀଵ

ൗ ൰ (5.9) 

As Figure V-13 depicts, the log-likelihood function is optimized at the maximum 

investigate value, 2.0, with the 95% confidence interval indicated.  The log-likelihood 
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function demonstrates the diminishing returns for transforming the response variable with 

its subsequent increase in model complexity and loss of interpretability.  Additionally, 

performing the response variable transform as described in Equations (5.8) and (5.9) does 

not correct the non-normality of the error terms or the heteroscedasticity. 

 

 
Figure V-13 Box-Cox Method of Log-Likelihood Maximization 

 
 

5.7.2.5 Principal Component Regression. 

Principal component regression was performed in an attempt to correct the error 

terms’ non-normality and the heteroscedasticity.  As multicollinearity was present on the 

covariates describing graph characteristics, converting the covariates into principal 

component scores will eliminate the multicollinearity (Montgomery, Peck, & Vining, 

2006, pp. 355-357).  The covariates, as well as factor A, which represents the number of 

nodes, were transformed into principal component scores via the orthogonal principal 

component loadings.  This technique transforms the seven covariates and the single factor 
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into eight orthogonal components.  The principal component loadings are presented in 

Table V-13.  Performing the linear regression using the three DOE remaining factors and 

the eight variables based on principal component scores still exhibited non-normal 

distributed error terms and heteroscedasticity. 

 

Table V-13 PCA Regression Loadings 
Component 

1 2 3 4 5 6 7 8 
numNodes -0.12 0.60 0.06 -0.10 0.07 0.75 -0.22 -0.06 

Density 0.22 -0.70 -0.06 0.06 -0.29 0.57 -0.22 -0.06 
Diameter -0.43 -0.05 -0.12 -0.59 -0.48 0.09 0.43 0.17 

MeanPath 0.45 0.17 -0.02 0.21 -0.13 0.12 0.25 0.79 
CharPath 0.44 0.19 -0.02 0.14 -0.24 0.10 0.59 -0.57 

AvgCC 0.42 0.26 -0.11 -0.35 -0.50 -0.29 -0.53 -0.07 
DegreeCorr -0.40 0.12 0.27 0.62 -0.60 -0.08 -0.11 -0.01 

alpha -0.15 0.09 -0.95 0.27 -0.02 0.00 -0.04 -0.02 

SS loadings 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Proportion Var 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 

Cumulative Var 12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 87.5% 100.0%
 

 

5.7.2.6 Factor Regression. 

Factor regression was also performed to attempt to correct the error terms’ non-

normality and the heteroscedasticity.  Factor regression, similarly to principal 

components regression, reduces multicollinearity by transforming some of the covariates 

into latent factors (Curtis, 1976).  Linear regression is then performed on the remaining 

covariates and the latent factors.  Equation (5.10) displays the factor regression equation 

with dependent variable y, covariates X in design matrix format including intercept, 

regression coefficients β, factor loadings matrix Λ, and factors f, and error term ε 

(Carvalho, Chang, Lucas, Nevins, Wang, & West, 2008, p. 1439). 
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ݕ  ൌ ܺߚ ൅ Λ݂ ൅  (5.10) ߝ

Applying factor regression in this experiment, the concomitant variables and 

factor A, the number of nodes, were converted into Thomson regression factor scores, the 

alternative being the Bartlett factor scores which “treats the specific factors as random 

errors (Bartholomew, Deary, & Lawn, 2009, p. 577).”  Three factors were kept according 

to the Kaiser-Guttman rule which keeps factors whose eigenvalues are greater than one.  

The factor loadings are presented in Table V-14.  Linear regression using the three 

remaining DOE factors and the three variables based on factor analysis scores of the 

concomitant variables still exhibited non-normal distributed error terms and 

heteroscedasticity. 

 

Table V-14 Factor Regression Loadings 
Factor 1 Factor 2 Factor 3 

numNodes -0.02 0.94 -0.12 
Density 0.16 -0.92 0.17 

Diameter -0.67 0.17 -0.64 
MeanPath 0.86 -0.07 0.49 
CharPath 0.88 -0.04 0.44 
AvgCC 0.96 0.01 0.15 

DegreeCorr -0.79 0.40 -0.10 
alpha -0.11 0.10 -0.32 

SS loadings 3.544 1.937 1.02 
Proportion Var 44.3% 24.2% 12.8% 
Cumulative Var 44.3% 68.5% 81.3% 

 

5.8 Quantile Regression 

Due the failure of the techniques described above to correct the heteroscedasticity 

and non-normality of the error term’s distribution, an alternative statistical approach than 

multivariate linear regression is required.  As quantile regression does not assume a 
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distribution on the error terms, it was selected as the statistical analytic technique to 

investigate the four design factors and the concomitant variables. 

Despite the failure to address the multiple linear regression model’s assumption 

via the various techniques described in Section 5.7.2, some insights can be garnered from 

the analysis.  The introduction of concomitant variables that address the underlying 

networks’ characteristics substantially improved the R2 and adjusted-R2 values for the 

multivariate linear regression model.  For the quantile regression analysis, it was decided 

to incorporate the same concomitant variables as in Section 5.7.2, to explore the effects 

of the design factors coupled with graph characteristics interactions.  The following 

quantile regression analysis was conducted in R utilizing the quantreg package (Koenker, 

2011). 

5.8.1 Median Regression Model. 

Quantile regression was used to create a median regression model with all of the 

design factors, denoted “factor QR model”, and all possible interactions as regressors.  

The pseudo-R2 was 0.522.  Backwards stepwise regression was attempted, using 

improving AIC as a removal criteria; though, no terms were eliminated from the model.  

The factor QR model’s coefficients are presented in Table V-15.  The factor QR model 

identifies all of the main effects as statistically significant, as well as several higher order 

interaction terms. 
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Table V-15 Factor QR Model Coefficients 

Coefficient
Lower 

CI 
Upper 

CI 
Significant 

(α = .05) 
(Intercept) 2.76 2.55 2.84 yes 

A -0.44 -0.48 -0.18 yes 
B -0.29 -0.38 -0.10 yes 
C -2.16 -2.26 -1.95 yes 
D 0.73 0.64 0.98 yes 

A:B 0.28 0.06 0.31 yes 
A:C 0.29 0.08 0.35 yes 
B:C 0.15 0.00 0.25 yes 
A:D 0.12 -0.01 0.25 
B:D 0.08 -0.14 0.18 
C:D -0.52 -0.75 -0.48 yes 

A:B:C -0.13 -0.19 0.09 
A:B:D -0.07 -0.21 0.05 
A:C:D -0.27 -0.35 -0.09 yes 
B:C:D -0.36 -0.40 -0.13 yes 

A:B:C:D 0.34 0.16 0.44 yes 
 

 

5.8.1.1 Factor QR Model Interpretation. 

In contrast to the linear regression models and the other statistically techniques 

employed in Section 5.7, statistical significance of the regressor coefficients can be 

assessed.  This is possible due to satisfying quantile regression’s relaxed error 

assumptions, in comparison to the OLS regression attempts. 

With the four-factor interaction deemed statistically significant, all interaction 

terms are included in the factor QR model due to the principle of model hierarchy.  

Interpreting the factor QR model begins by analyzing the main effects’ coefficients.  The 

strongest effect is factor C, the percentage of sources that are reliable.  Factor C’s 

coefficient sign is counter-intuitive; one would expect that with increasing percentages of 

reliable sources, the more accurately the methodology would perform.  This counter-
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intuition could result from factor C’s involvement with several other statistically 

significant interaction terms.  Factor C’s wrong sign could also be an indication of 

omitting important regressors or some of the regressors’ ranges may be too narrow 

(Montgomery, Peck, & Vining, 2006, p. 112). 

There may be other explanations for Factor C’s coefficient’s unexpected sign.  As 

the percentage of reliable sources increases within a set of information sources, it may 

become more difficult to correctly identify the few unreliable sources.  It may be easier to 

correctly discern members of two approximately equally sized populations, than to 

identify correct associations of two imbalanced populations.  Other classifiers have been 

noted in the literature to have degraded performance as a result of this phenomenon and it 

is an active research area (Japkowicz & Stephen, 2002, pp. 429, 432). 

Another potential explanation involves the experimentation.  Reliable sources 

were generated under a mechanism that intentionally causes them to fail to report 

relationships among actors to better mimic real world social network reporting empirical 

findings.  As increasing percentages of reliable sources are present, each reliable source’s 

minor errors can increase the difficulty of distinguishing unreliable sources who report 

greater amounts of erroneous information. 

Factor D, the source sampling percentage, is the other design factor whose impact 

on the methodology can be anticipated.  Factor D possess a positive coefficient, 

indicating at increased levels of sampling, the better the methodology performs.  As the 

source sampling percentage impacts the amount of information given by each source, one 

would expect that the more information a source provides, the easier it is to correctly 
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classify them as reliable or unreliable.  This intuition is reflected in factor D’s positive 

coefficient. 

Factors A’s and B’s main effects both possess negative coefficients, indicating 

that for their main effects’ contributions increasing values diminish the methodology’s 

performance.  Factor A, the network size, indicates that larger networks inhibit correct 

assessment of source reliability.  With larger networks, it is more likely the information 

sources are reporting on different aspects of the networks.  This spreading of the sources’ 

reporting across the network increases the chances that sources are commenting on 

unique relationships, which are not subject to confirmatory or disputing reporting.  Factor 

B, the number of sources, indicates that the more sources reporting on the network, the 

more difficult it is to properly distinguish reliable from unreliable sources—more 

sources, more potential disagreement. 

Several two-factor, three-factor interaction effects, along with the four-factor 

interaction, are statistically significant.  This complexity of the median regression model 

is not surprising as one can imagine multiple scenarios for which interaction effects 

would affect.  For instance, having many information sources (factor B) reporting little 

amounts of information (factor D), coupled with a large majority of the sources are 

reliable (factor C) may improve the methodology’s performance.  In fact, interaction 

BCD’s effect coefficient is negative which aligns with the scenario just described.  

5.8.1.2 Median Regression with Covariates. 

Quantile regression was applied to create a median regression model 

encompassing all of the design factors, concomitant variables, and possible interactions.  
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This “full QR model” possesses a pseudo-R2 value of 0.753.  When backwards stepwise 

regression was attempted, the full model proved to possess the lowest AIC. 

Extending the full QR model and factor WR model to every integer percentile 

within (5, 95), i.e. create individual quantile regression models for every percentile in the 

specified range, the relative-R2 was plotted and is displayed in Figure V-14.  

Additionally, the pseudo-R2 was computed for both the full and factor models and is 

displayed in Figure V-15.  These figures indicate that the full QR model displayed 

substantial improvement over the factor QR model for all tested quantiles. 

Figure V-14 displays the superiority in explanatory power of the full QR model 

over that of the factor QR model.  The full QR model shows substantial improvement for 

the extreme quantile models.  Figure V-15 displays the full QR model exhibiting more 

consistent model explanatory power across the various explored quantiles.  The factor 

QR model appears inconsistent with notable decreases in pseudo-R2 for the extreme 

quantile regression models. 

The complete listing of the median regression coefficients and their 95% 

confidence interval bounds are provided in Table B-1 in Appendix A.  Table V-16 

provides the coefficients which are significant at the α = 0.05 level, along with the 

associated 95% confidence interval upper and lower bounds, with interaction effects 

denoted with a “:” separating the variables.  Examining the significant factors highlights 

the importance of the underlying network graph’s structural characteristics on the 

methodology’s performance.  Only six terms, the intercept, factors B and C, the AB 

interaction, the BD interaction, and the ABD interaction do not involve a graph structural 

characteristic.  All of the other significant terms, with the sole exception of alpha 
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exhibiting a main effect, are composed of design factors interactions with the 

concomitant graph characteristics. 

 

 
Figure V-14 Relative-R2 of Full QR Model and Factor QR Model 

 
 

 
Figure V-15 Pseudo-R2 of Full QR and Factor QR Models 
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The prominence of the concomitant variables as significant is indicative of the 

importance of underlying network structures on the algorithm’s performance.  Similar 

results were exhibited by the improvement in the R2 and adjusted-R2 in the ANCOVA 

analysis.  However, as discussed in Section 2.10.1, the ANCOVA error distribution 

assumptions are violated and thus no definitive conclusions can be drawn from the 

ANCOVA analysis.  Quantile regression’s assumptions are met and provide conclusive 

statistical evidence for this data set that the underlying network structure and 

characteristics impact the algorithm’s performance. 

5.8.2 Quantile Regression Coefficients. 

Next, an examination of the quantile regression coefficients was conducted.  

Quantile regression models were created for each integer percentile between the 9th and 

91st quantiles.  The large confidence intervals for the extreme quantiles, as found in this 

data set, limit their utility in examining their effects.  Bootstrapping was then applied to 

generate 95% confidence intervals on each coefficient across the 81 quantiles.  The 

ordinary least squares (OLS) coefficient with its 95% confidence levels were also 

computed according to the full model. 

What follows is a series of figures depicting the quantile regression coefficients as 

computed across the 81 quantiles, denoted as dark points, and their associated 95% 

confidence intervals, identified by a gray area.  Additionally for each regression term, the 

OLS coefficient and its associated 95% confidence interval is depicted.  These are 

identifiable by a horizontal solid line with two dotted lines above and below marking the 
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Table V-16 Median Regression Significant (α = 0.05) Factors 
Coefficient Lower CI Upper CI 

(Intercept) 2.55 2.43 2.70 
A -0.44 -0.61 -0.31 
C -1.97 -2.16 -1.84 
D 0.67 0.53 0.91 

MeanPath -0.98 -1.18 -0.67 
alpha 0.29 0.20 0.55 

DegreeCorr -0.69 -0.91 -0.36 
A:C 0.19 0.08 0.39 
C:D -0.46 -0.66 -0.22 

B:MeanPath -0.40 -0.70 -0.04 
C:MeanPath 0.28 0.06 0.54 

A:DegreeCorr 0.62 0.04 0.82 
A:B:MeanPath 0.58 0.05 0.98 
A:C:MeanPath 0.61 0.22 1.02 
B:C:MeanPath -0.49 -0.79 -0.08 

A:B:alpha 0.36 0.07 0.58 
A:C:alpha -0.40 -0.51 -0.04 
A:D:alpha 0.37 0.18 0.51 
B:D:alpha 0.28 0.10 0.44 

A:C:DegreeCorr 0.43 0.10 0.70 
A:D:DegreeCorr 0.35 0.12 0.68 
B:D:DegreeCorr 0.45 0.11 0.81 
C:D:DegreeCorr -0.62 -0.98 -0.29 

A:B:C:alpha -0.30 -0.53 0.00 
A:C:D:DegreeCorr 0.51 0.26 0.88 

A:MeanPath:alpha:DegreeCorr 0.44 0.01 0.71 
A:B:D:MeanPath:alpha -0.77 -1.48 -0.28 
A:C:D:MeanPath:alpha -0.78 -1.33 -0.22 

A:B:C:D:DegreeCorr -0.49 -0.80 -0.10 
B:C:D:MeanPath:DegreeCorr -0.54 -0.94 -0.11 

A:B:D:alpha:DegreeCorr -0.81 -1.54 -0.30 
B:C:D:alpha:DegreeCorr 0.75 0.15 1.57 

C:D:MeanPath:alpha:DegreeCorr 0.41 0.10 0.74 
A:B:C:D:MeanPath:DegreeCorr 0.78 0.30 1.06 

A:B:C:MeanPath:alpha:DegreeCorr -0.61 -1.23 -0.21 
A:B:C:D:MeanPath:alpha:DegreeCorr 0.43 0.05 1.02 
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extent of the 95% confidence interval.  The y-axis represents the regressor’s coefficient 

value and the x-axis represents the quantile used in the quantile regression model. 

Figure V-16 and Figure V-17 display the quantile regression main effect 

coefficients including the intercept.  These figures highlight a capability of quantile 

regression when an analyst is interested in the tail behavior of a distribution.  Notably, for 

this experimentation, of interest are the significant factors when the algorithm performs 

poorly.  Thus, we are interested in the lower end of the response variable’s distribution 

and the associated significant variables. 

Examining the upper right quadrant in Figure V-16 which represents the 

coefficient associated with factor A, node size of the “true network graph”, the OLS 

factor A coefficient appears to be significant at the α = 0.05 level.  Similarly in the 

median regression, factor A’s coefficient is assessed as significant at the α = 0.05 level 

across most quantile regression models.  However, as depicted in Figure V-16, factor A’s 

significance may be in question for lower quantile models.  This implies the factor A may 

not possess a statistically significant effect on the methodology when it performs worse.  

Ignoring higher order interaction effects for the moment, when the algorithm performed 

worse, factor A possesses a statistically insignificant negative coefficient and when the 

algorithm exhibited good performance, factor A possesses a statistically significant 

negative coefficient with a stronger effect. 

This ability to examine regressors’ effects in the tail behavior of the response 

variable’s distribution exemplifies a capability advantage of quantile regression over OLS 

regression.  In this experimentation, the response variable’s tail behavior corresponds to 



www.manaraa.com

 

V-53 

 

when the methodology performs worse, which assists in characterizing worst case 

conditions for employment of the methodology. 

Factor B, the number of sources appearing in the lower left panel of Figure V-16, 

appears to have a negative impact upon the response variable, again not taking into 

account the higher order interaction terms at this time.  Factor B’s coefficient seems to 

decrease for the higher performance levels of the algorithm.  The coefficient decrease 

actually increases its effect, which is negative, which Factor B has on the response 

variable, implying that in the cases of superior algorithm performance Factor B may be 

more statistically significant. 

Factor C, the percentage of sources that are reliable, displayed in the lower right 

panel of Figure V-16, has a negative effect on the methodology’s proficiency at all levels 

of performance, which could result from class imbalance as previously discussed.  The 

coefficient of Factor C, which varies for the various examined quantile regression 

models, is always statistically significant.  Factor C exhibits greater influence on the 

methodology’s performance when it performs well and becomes less influential as an 

explanatory factor when the methodology performs poorly, not accounting for higher 

order interactions which will be examined shortly. 

Factor D, the sampling percentage, displayed in the upper left panel of Figure 

V-17, appears to be a significant factor at all levels of methodology performance.  As the 

sampling percentage reflects the amount of information each source is providing, it is 

intuitive that this factor contributes positively to the methodology’s performance.  At 

higher levels of methodology performance, factor D’s coefficient appears to be 
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increasing, implying factor D’s increasing influence in the model; although, the 

confidence interval on the coefficient is also expanding.   

The concomitant variables, mean path length and the degree correlation, appear to 

possess negative main effects that are statistically significant, Figure V-17.  The 

concomitant computed alpha exponent of a power-law degree distribution variable, 

appears to possess a statistically significant positive main effect at almost all quantiles, as 

shown in the lower left panel of Figure V-17. 

Proceeding in a similar fashion for the higher order interaction terms in the 

quantile regression models results in Table B-1 in Appendix A, which depicts the 

independent variables and interaction terms, their associated effects and their statistical 

significance at α = 0.05.  Since this is investigating multiple quantile regression models 

computed for a range of quantiles, the effects and statistical significance is summarized 

 
Figure V-16 Intercept and Main Effects’ Coefficients’ Confidence Intervals 
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by visual inspection of the graphs.  Variables’ and interaction terms’ effects are assessed 

as positive or negative if the majority of the regressor’s coefficients are observed to lie 

above or below zero on the y-axis, respectively.  If a regressor appears to possess positive 

and negative coefficients for a substantial number of quantiles, the variable’s effect was 

noted as mixed.  A variable’s statistical significance was noted as present, if, for at least a 

substantial number of the quantile regression models, the confidence interval of the 

coefficient did not overlap zero on the y-axis. 

This visual analysis of the variables’ effects across multiple quantile regression 

models is summarized in Table C-1 in Appendix C.  Appendix D contains the plots, 

Figure D-1 through Figure D-18, upon which the visual inspection was accomplished.  

The plots depict each factor’s or interactions’ quantile regression coefficients across the 

range of examined quantiles. 

 
Figure V-17 Main Effects’ Coefficients’ Confidence Intervals (cont.) 
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Examining the variables’ effects across multiple quantile regression models 

allows inference that spans across the quantile regression models.  The statistical 

significance of higher order interaction terms is a testament to the complex interactions 

and effects, similar to observations in the ANCOVA model of Section 5.7.2.  Multiple 

concomitant variables interactions with the design factors are statistically significant 

across the majority of quantile regression models, independent of the specific quantile.  

Table V-17 highlights regressors’ whose coefficients appeared to be significant across a 

substantial number of quantiles. 

 

Table V-17 Significant Regressors Across All Quantiles 
Regressor Effect   Regressor Effect 

(Intercept) Positive   C:D:DegreeCorr Negative
A Negative   A:B:C:D Mixed 
B Negative   B:C:D:MeanPath Negative
C Negative   A:C:D:alpha Negative
D Positive   A:C:D:DegreeCorr Positive 

MeanPath Negative   A:MeanPath:alpha:DegreeCorr Positive 
alpha Positive   B:C:D:MeanPath:DegreeCorr Negative

DegreeCorr Negative   A:B:D:alpha:DegreeCorr Negative
A:C Positive   A:C:D:alpha:DegreeCorr Mixed 
C:D Negative   A:C:MeanPath:alpha:DegreeCorr Negative

B:MeanPath Negative   B:C:MeanPath:alpha:DegreeCorr Negative
A:DegreeCorr Positive   A:D:MeanPath:alpha:DegreeCorr Mixed 
B:C:MeanPath Negative   C:D:MeanPath:alpha:DegreeCorr Mixed 
B:D:MeanPath Positive   A:B:C:D:MeanPath:DegreeCorr Positive 

A:C:alpha Negative   A:B:C:MeanPath:alpha:DegreeCorr Negative
A:D:alpha Positive   A:B:D:MeanPath:alpha:DegreeCorr Mixed 

A:C:DegreeCorr Positive   A:C:D:MeanPath:alpha:DegreeCorr Positive 
A:D:DegreeCorr Positive   A:B:C:D:MeanPath:alpha:DegreeCorr Positive 
B:D:DegreeCorr Positive       
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5.9 Analysis Summary. 

The traditional statistical measure Fleiss’ Kappa was employed to assess inter-

rater reliability.  As summarized in Table IV-1, the correlation between Fleiss’ Kappa 

and the percentage of reliable sources was weakly positive.  This illustrates some of the 

complexity involved with assessing social network information sources.  Fleiss’ Kappa 

only characterizes the entire collection of sources and in this experimentation showed 

poor performance in detecting the presence of unreliable sources in a collection of social 

network information sources. 

As characterizing the entire collection of sources proved to be inadequate, 

pairwise source comparisons were conducted to determine source veracity.  The 

methodology presented in this chapter, utilizing Cohen’s Kappa, displayed good 

performance in correctly distinguishing between reliable and unreliable sources.  Six 

other binary similarity measures were tested and performed worse than Cohen’s Kappa. 

Conducting the methodology with Cohen’s Kappa resulted in a median AUC of 

0.962 and an average of 0.921, indicating a strong ability to discriminate between reliable 

and unreliable information sources.  The methodology appears robust to the variety 

expressed in the experimental design factors, with over 75% of examined cases 

delivering an AUC of greater than 0.83. 

Detailed examination of the methodology’s performance was conducted by 

statistical analysis of the DOE.  The four DOE design factors’ influence on methodology 

performance was initially analyzed with ANOVA.  Unfortunately, there appeared to be 

substantial departures from normality and the presence of heteroscedasticity.  This 

violation of assumptions precludes any statistical inference from the ANOVA. 
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Attempting to correct the deviations from the ANOVA assumptions, ANCOVA 

was employed, incorporating SNA measures that characterize the underlying social 

network structure.  Seven SNA network measures were initially identified, but only three 

could be utilized due to multicollinearity among them.  Accounting for this graph to 

graph variation did not improve the ordinary least squares regression model’s adherence 

to its fundamental assumptions.  Common statistical response variable transform 

techniques were applied, but to no avail.  Continuing to incorporate the concomitant 

variables, PCA and factor regression were conducted to attempt to fit the ordinary least 

squares regression model while satisfying the statistical assumptions, though these 

techniques were unsuccessful. 

Finally, quantile regression was applied, for its semi-parametric approach makes 

the error term’s distribution irrelevant.   A median regression model using the original 

design factors (factor QR model) was constructed, as well as another model containing 

the design factors and the three concomitant variables (full QR model).  The models were 

compared, with the full QR model displaying superior performance for all tested 

quantiles in terms of relative-R2.  The pseudo-R2 was found to be 0.753.  The full QR 

model was extended to construct quantile regression models for all integer percentiles 

between the 9th and 91st quantiles.  This allowed characterizing the regressors’ impact 

across the spectrum of the methodology’s performance.  This enabled investigating 

regressors that contribute to good or poor performance of the methodology. 
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5.10 Analysis Results. 

With the selection of the full quantile regression model as an appropriate model 

for the experimental data set, analysis was conducted examining the coefficients of the 

regressors.  The model is complex with four design variables with an additional three 

concomitant variables, and the associated interaction terms.  Despite this complexity, 

examining quantile regression models over a spectrum of quantiles enables 

generalizations to be made.  The main effects for the design factors and the concomitant 

variables are statistically significant for most of the quantile regression models.  As 

displayed in Table V-17, numerous interaction effects are statistically significant.  Of 

interest, is that the majority of these regressors contain at least one of the concomitant 

variables as a component of the interaction.   

The design variables’ influence in the methodology meets expectations of their 

importance in assessing sources’ reliability.  It is of no surprise that the number of 

sources, the number of reliable sources, and the amount of source provided information 

are critical in discerning unreliable sources.  However, the substantial improvements 

obtained in the models’ goodness of fit with inclusion of network structural 

characteristics, implies that the underlying social network graph is an important 

consideration to the methodology’s performance. 

5.11 SNA Practical Results 

These results show that for the factors examined in the experimentation, the 

methodology provides a quantitative technique for assessing social network information 

sources that displays good performance.  The experimental design investigated factor 
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levels likely to be experienced by SNA analysts facing real world problems.  These 

results are only valid for social network analytic conditions that are within the factors’ 

ranges explored in the experimentation, but the DOE could easily be augmented to 

account for increased factors’ ranges or even additional factors.  The results provided in 

this chapter have only been shown to hold for the conditions provided in the experimental 

design.  Due to the acceptable quantile regression model fit, interpolating the results to 

other points within the design space should provide similar results with little risk of 

extreme methodology performance deviance.  Of course, employing the methodology 

under conditions that lie outside the design space investigated here assumes greater risk 

in actual methodology performance. 

SNA analysts can employ the methodology to quantitatively assess social network 

information sources which combined with expert opinion and other subjective factors 

may substantial improve the likelihood of correctly identifying unreliable sources and 

excluding their information from the social network model.  The methodology enables 

SNA analysts to quantitatively score the amount of concordance between two 

information sources by applying one or more binary similarity measures.  SNA analysts 

can account for varying information sources perspectives of the social network via a 

weighting of pairwise comparisons among the sources based upon their overlap in 

reporting.  Information sources can be quantitatively grouped into reliable and unreliable 

clusters via the weighted MDS and fuzzy clustering.  The methodology provides a 

mechanism to provide visual representations of the concordance among the information 

sources’ reports via the weighted MDS visualization.  This visualization may highlight 

discrepancies or patterns that initiate further SNA analyst investigations and inquiries that 
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without application of the methodology developed in this research would potentially be 

overlooked. 

5.12 Chapter Summary 

This chapter developed the source comparison methodology with an example of 

the methodology being presented.  The methodology was tested according to the 

experimental design detailed in Section 3.3.  The results of the experimentation were 

analyzed using a variety of standard statistical techniques and nontraditional techniques 

that were introduced in Section 2.10.  The next chapter presents an employment of the 

methodology in a case study format. 
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VI. Case Study 

This chapter utilizes the developed methodology on an example based on real 

world data to demonstrate its effectiveness and utility for SNA analysts.  First, a 

description of the real world data set is provided.  Next, the experimentation process is 

discussed.  Following, the methodology developed in this dissertation is employed 

against the case study.  Finally, widely used SNA measures are applied to compare and 

contrast the results stemming from the different social network models to estimate the 

impact of imperfect information upon the analysis. 

6.1 Data Set Description 

This data set examined in this case study derives from Natarajan (2006).  The data 

set is composed of a social network model generated via English translations of over 

2,000 pages of a 1993 court case’s transcripts documenting 2,408 conversations derived 

from the wiretapping of 21 phones (Natarajan, 2006, p. 176).  The social network is a 

representation of 

“an international drug trafficking conspiracy, with links to mafia families, 
which had acquired $144 million in assets.  The organization was said to 
be responsible for transporting, receiving and selling more than 200 
hundred [sic] kilograms of heroin per year (approximately 193 kg were 
recovered during the investigation) (Natarajan, 2006, p. 173).” 

Out of the total 2,408 conversations, only in 1,851 conversations were individuals 

able to be identified by name, resulting in 294 participants in the social network of 

interest.  Out of the 294 identifiable participants, only 86 of the actors spoke with at least 

two members of the network.  These 86 actors were further reduced to 38 “core 
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members…who had two or more contacts and were involved in five or more 

conversations (Natarajan, 2006, p. 179).” 

Natarajan (2006) conducted a role analysis based upon a content analysis of a 

random sample of conversations among the 38 core members.  Natarajan determined that 

the 38 core members performed one of four roles detailed in Table VI-1, although 

“individuals sometimes switched roles in the furtherance of particular deals (Natarajan, 

2006, p. 187).”  The description of each of these roles follows. 

 

Table VI-1 Core Members' Role Composition 

Role 
Number of Core 

Members 
Sellers 18 

Retailers 8 
Brokers 8 

Secretaries 4 
Total 38 

(Natarajan, 2006, pp. 180-181)
 

 

Sellers are “individuals who were mostly involved in selling drugs in quite 
large quantities (a pound or more), but who were also involved to a more 
limited extent in brokering deals (Natarajan, 2006, p. 180).” 

Retailers bought exclusively from sellers…[and] most deals involved 
between a quarter of an ounce to four ounces (Natarajan, 2006, p. 180). 

Brokers were middlemen between sellers as well as between sellers and 
retailers.  They set up meetings to inspect drugs and helped negotiate the 
price (Natarajan, 2006, p. 181). 

Secretaries are women, “generally wives or girlfriends of the active 
members.  They passed messages to buyers, sellers and brokers.  They 
were well known to those involved in buying and selling (Natarajan, 2006, 
p. 181).” 
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The 38 core actors, labeled A through LL with their corresponding gender 

honorific, are displayed in Figure VI-1 as constructed by Natarajan (2006).  Natarajan 

specifically identified the actors performing as sellers and brokers.  The secretaries were 

assumed to represent the females depicted in Figure VI-1 in accordance with the 

description of the secretaries role.  One female, Ms. Q, specifically identified by 

Natarajan as a seller, left the four remaining females, Ms. E, Ms. G, Ms. H, and Ms. CC, 

were assumed to be secretaries.  The remaining network members were assessed as 

retailers.  Table VI-2 lists the actors’ assessed roles. 

 

 
Figure VI-1 38 Core Members (Natarajan, 2006, p. 184) 
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Table VI-2 Core Members' Roles 
Role Actors 
Sellers: F, J, K, L, M, W, X, Y, Z, AA, BB, DD, EE, FF, GG, HH, JJ, LL 

Retailers: B, C, I, N, O, T, II, KK 
Brokers: A, D, P, Q, R, S, U, V (Q is identified as female in Figure VI-1.) 

Secretaries: E, G, H, CC (all identified as female in Figure VI-1.) 
(Natarajan, 2006, pp. 184-185)

 
 

6.2 Experimentation 

Despite the wealth of information contained in the numerous transcripts utilized 

in the trial of 35 defendants, this data set does not represent the information requirements 

faced by analysts, but reflects the results of an analysis.  Analysts must sift through large 

amounts of data and discard irrelevant information.  The information contained in the 

transcripts resulted from wiretaps, but even this monitoring is susceptible to generating 

imperfect social network information. 

[W]iretap interceptions must be authorized by the relevant court upon a 
detailed showing of probable cause.  Specifically, the investigating officer 
must provide a detailed affidavit showing there is probable cause to 
believe the phone is being used to facilitate a specific, serious, indictable 
crime.  Undoubtedly, chance will help to determine which phones are 
targeted by the investigators and there is no guarantee that they will 
succeed in identifying all the phones involved, or even the most critical 
ones (Natarajan, 2006, p. 177). 

With this data set, the only information available is that which was deemed 

suitable for prosecution.  The information that was discarded during the analysis phase of 

the investigation is unavailable.  Thus, this case study, potentially, only presents a partial 

representation of the information used to construct the social network model.  

Additionally, with the data derived from wiretaps, it is likely that other interactions 

among the network’s members were not observed and therefore, not incorporated into the 
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information used for the prosecutions.  As a result, the social network model is a 

representation of the underlying relationships and interactions among members of the 

network and ultimately, the accuracy of its portrayal is unknown.  However, this social 

network model does represent one of the few existing, publically available, dark network 

data sets.  As such, this social network is used to demonstrate the employment of the 

developed methodology. 

6.2.1 Generating Information Sources. 

The social network of the 38 core members provided by Natarajan (2006) will 

serve as the true underlying social network.  Hypothetical information sources were 

assumed and representative reporting was constructed.  Unreliable sources will be 

generated as that information is unavailable from the original case.  The methodology 

was employed to determine if it could correctly identify and distinguish the reliable 

information sources from the unreliable information sources. 

6.2.2 Reliable Information Sources. 

As mentioned in Section 2.3.2.4, dark network members practice OPSEC 

techniques and procedures to frustrate governmental efforts to inhibit the network’s 

operations.  For this case study, we will assume that the organization’s members are 

carrying out good OPSEC practices.  However, in this case, there are actors in the social 

network who are not members of the organization.  Identified by Natarajan (2006) as 

secretaries, who are “wives or girlfriends of the active members (Natarajan, 2006, p. 

181)”, it can be expected that they may not employ OPSEC practices to the full extent as 

the organizations’ members.  For this case study, it will be assumed that the secretaries 
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are the weak link to the organization and this vulnerability is exploited by law 

enforcement.  Thus, Ms. E, Ms. G, Ms. H, and Ms. CC, will serve as the reliable 

information sources.  In this case, the secretaries do not have to be voluntary reliable 

information sources, but merely the source on which reliable information is being 

reported.  We will assume that the secretaries’ phones are being wiretapped and due to 

their poor practice of OPSEC, information regarding the underlying structure of the 

social network is being revealed.  However, because of their positions as secretaries in 

the organization, there is a limit to the information that can be garnered from surveilling 

them.  The four secretaries, as reliable information sources, reflect an approximate 10% 

of the overall organization composed of 38 actors. 

6.2.2.1 Direct Relationships. 

As the secretaries are being monitored, it can be assumed that their direct 

relationships with members of the network are obtainable.  This assumes difficulties 

faced by law enforcement, such as speaking in foreign languages or in code, are not 

effective in obscuring organizational participation (Natarajan, 2006, p. 178).  Thus any 

actor directly connected to one of the secretaries will be reported by that corresponding 

information source in this demonstration. 

6.2.2.2 Indirect Relationships. 

As the secretaries are wives and girlfriends of active members, it is not 

inconceivable that they would be aware of other network actors connected to their 

corresponding boyfriends and husbands.  It is not reported in Natarajan (2006) which 

actors are the secretaries’ boyfriends and husbands.  Table VI-3 depicts the assumed 
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significant other(s) for each of the secretaries, noting that some secretaries possess 

several significant others.  Any actor directly connected to a secretaries’ significant other 

has a chance of being known and reported by the secretary.  Or in this case of information 

based on wiretaps, the significant other’s relationship with another member of the 

organization is discussed on a phone call with the secretary.  For this research, these 

secretaries’ indirect relationships will be probabilistically reported.  A direct relationship 

between a secretary’s significant other(s) and another member of the network will be 

reported by the secretary with probability 0.5. 

 

Table VI-3 Secretaries’ Significant Others 

Secretary 
Significant 

Other(s) 
E: DD 
G: X, Y, DD 
H: V, W, BB 

CC: DD 
 

 

6.2.2.3 Triad Closure. 

In some case, the secretary is directly connected to an actor who is also directly 

connected to the secretary’s significant other.  In these cases, it is more likely that the 

relationship between the actor and the significant other is known by the secretary or 

discussed in conversation.  This sociological observed increased likelihood of triad 

closure was the inspiration for the clustering coefficients discussed in Section 2.2.1.9.  In 

this case study, it will be assumed that relationships that constitute the third leg of a triad 
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for a secretary and her significant other will be reported with probability of 0.75, a 

substantial increase over the indirect relationship of 0.5. 

6.2.2.4 Reliable Source Reporting. 

Table VI-4 summarizes the probability of the true underlying social network 

relationships being reported.  The probabilities ensure that each secretary’s reporting is a 

reflection of her network perspective.  For this reporting generation method, a secretary 

can only report relationships that are at most, two steps away from her. 

 

Table VI-4 Relationship Reporting Probabilities 
Relationship Probability 

Direct 1.0 
Indirect 0.5 

Triad Closure 0.75 
All Others 0.0 

 
 

Using the probabilities specified in Table VI-4, reports of the underlying social 

network were generated for each secretary and are displayed as edge lists in Figure VI-2 

and visualized in Figure VI-3 through Figure VI-6. 
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E G H CC 
E DD A X H V A CC
K DD B X H W C CC
O DD D DD H BB C DD
Q DD E DD I W D CC
Y DD G X J V D DD
Z DD G Y I BB G DD

AA DD G DD V W N CC
CC DD N DD V BB O DD
DD II O X W BB R CC
DD JJ O DD X BB S CC

P X S DD
Q DD Z CC
V X CC DD
W X CC EE 
X Y CC FF 
X BB DD EE 
Z DD DD FF 

DD JJ DD II 
DD KK DD JJ 

Figure VI-2 Edge List of Each Secretary’s Reports 
 

 

 
Figure VI-3 Visualization of Ms. E's Report 
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Figure VI-4 Visualization of Ms. G's Report 

 
 

 
Figure VI-5 Visualization of Ms. H's Report 
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Figure VI-6 Visualization of Ms. CC's Report 

 
 

6.2.3 Unreliable Information Sources. 

Unreliable sources need to be randomly generated as any detected in the real 

world data set were discarded and excluded from presentation at trial.  With four reliable 

sources, it was decided to generate two unreliable sources, U1 and U2, resulting in one 

third of the information sources being unreliable.  The unreliable sources should appear 

similar to reliable sources.  The number of edges reported by each secretary is presented 

in Table VI-5.  The two unreliable sources were selected to report 32 and 21 edges by a 

random drawing of two integers from the uniform distribution on the range [14 , 44], 
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bounded by the minimum and maximum number of edges reported by the reliable 

information sources. 

 

Table VI-5 Number of Reported Edges by Secretary 
Secretary Number of Reported Edges 

E 20 
G 44 
H 14 

CC 29 
 

 

With the number of edges specified for each of the two unreliable sources, U1 and 

U2, random edges to be reported as present were generated by uniformly at random 

selecting the first actor from the set of 38 actors and then uniformly at random selecting a 

second actor from the remaining 37 actors.  This process produced the unreliable sources 

reporting the edge lists displayed in Figure VI-7 and the visualizations depicted in Figure 

VI-8 and Figure VI-9. 
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U1 U2 
Z P W H 
O K Q GG
EE P H F 
F DD Z M 
F FF Z A 
J U W U 
R I LL E 
U J G HH
FF J W HH
BB KK GG JJ 
L N J DD

AA GG Z I 
T EE Y U 
Q D P L 
B CC J F 

DD AA H J 
HH F C FF 
EE KK JJ R 
O W D O 
U KK K DD
V Q KK W 
N D 
V P 
V JJ 
B F 
Z M 
A II 
T K 

DD X 
HH G 
Z I 
B JJ 

Figure VI-7 Edge List of Unreliable Sources’ Reports 
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Figure VI-8 Visualization of U1’s Report 
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Figure VI-9 Visualization of U2's Report 

 
 

6.3 Methodology Employment 

The methodology developed in Chapter V was implemented using the binary 

similarity measure selected in Chapter IV, Cohen’s kappa.  Table VI-6 displays the 

computed pairwise dissimilarity scores and Table VI-7 displays the source weightings. 
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Table VI-6 Source Dissimilarity Scores 
E G H CC U1 U2 

E 0.38 1.5 0.3 0.88 0.8 
G 0.38 1.4 0.32 1.11 1.06 
H 1.5 1.4 1.5 1 0.38 

CC 0.3 0.32 1.5 1.05 1.12 
U1 0.88 1.11 1 1.05 0.85 
U2 0.8 1.06 0.38 1.12 0.85 

 
 

Table VI-7 Source Weightings 
E G H CC U1 U2 

E 0.36 0 0.3 0.26 0.27 
G 0.36 0.23 0.36 0.5 0.39 
H 0 0.23 0 0.18 0.17 

CC 0.3 0.36 0 0.38 0.31 
U1 0.26 0.5 0.18 0.38 0.59 
U2 0.27 0.39 0.17 0.31 0.59 

 
 

6.3.1 Inferences Based on Sources’ Scores and Weights. 

By examining the sources’ scores found in Table VI-6, several inferences can be 

drawn.  Information source E appears to strongly agree with the reports made by sources 

G and CC and disagrees with U1’s and U2’s reports.  Source H is reporting on distinctly 

different parts of the social network compared against sources E and CC, identifiable due 

to the minimum weighting of zero between sources H and E and sources H and CC in 

Table VI-7.  Source CC possesses a similar pattern and reporting relationships as source 

E.  Source G follows the patterns of sources E and CC with one exception.  Source G is 

in strong disagreement with source H, with a dissimilarity score of 1.4, and their 

reporting has weak to moderate overlap with a weighting of 0.23.  This leads to the 
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inference that sources E, G, and CC are concordant and are providing confirmation of 

each other’s reports.  With those three sources being identified as concordant, an SNA 

analyst is likely to assess sources E, G, and CC as reliable.  With source G being deemed 

a reliable source, its strong disagreement with source H implies source H is unreliable. 

Information source U1 possess moderate to strong disagreement with all other 

reporting sources, as evidenced by its high dissimilarity scores in Table VI-6.  Source 

U1’s reporting is not unique and partially aligns with other information sources as its 

weightings are non-zero.  As U1 is discordant with all other sources, it will likely be 

assessed as unreliable.  U2 possesses high dissimilarity scores will all information 

sources with the exception of source H, though there is weak overlap with a weighting of 

0.17, the weakest weighting in Table VI-7.  Sources U2 and H appear to be concordant 

with each other, but discordant with all other information sources with which their social 

network reports overlap.  Information source H’s strong disagreement with source G 

implies that it is unreliable.  Information source U2 is only concordant with source H, 

indicating that it is also an unreliable source.  However, the weak weightings of 

information sources U2 and H with the other reporting sources signifies that they are 

reporting on different aspects of the social network. 

In this case, the SNA analyst faces a dilemma.  Information sources E, G, and CC 

are concordant and are reporting on similar aspects of the social network.  Information 

source U1 is discordant with all other information sources and can be assessed as 

unreliable.  Information sources U2 and H may be unreliable due to source H’s strong 

disagreement with source G, or an alternative explanation is that U2 and H are reliable 

sources and E, G, and CC are unreliable.  However, information sources U2 and H appear 
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to be reporting on different aspects of the social network in comparison to sources E, G, 

and CC. 

6.3.2 Source Reporting Visualization. 

The visualization developed in this research enables a SNA analyst to pictorially 

depict the information contained in Table VI-6 and Table VI-7.  In this case study, the 

limited number of information sources allows for inspection of the source dissimilarity 

score and weightings matrix.  With larger number of sources, the visualization may prove 

more useful to SNA analysts as large matrices become unmanageable and unwieldy for 

visual inspections and comparisons.  Even with a limited number of information sources, 

as the six in this case study, the visualization can provide insight. 

The weighted MDS visualization of the information sources is provided in Figure 

VI-10.  As illustrated, the strong concordance of information sources E, G, and CC is 

readily apparent.  U1’s discordance with all other sources is visually depicted by its 

isolation on the graph.  Sources U2 and H appear concordant, but provide an alternative 

depiction of the network, visible from their separation from the cluster containing sources 

E, G, and CC. 

6.3.3 Information Sources Assessment. 

Faced with the raw data presented in Figure VI-2 and Figure VI-7, SNA analysts’ 

did not possess many options for assessing information sources based on quantitative 

methods before the introduction of the methodology presented in this dissertation.  

Applying the methodology against the real world data present in this case study, albeit 
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with hypothetical information sources, highlighted the developed methodology’s 

capability to aid SNA analysts in quantitatively assessing information sources. 

In this case study, the methodology quickly detected the unreliability of U1, 

which was a true unreliable source as a result of the generation mechanism.  The 

methodology also quickly determined the strong concordance in reporting among 

information sources E, G, and CC.  Information sources U2 and H were also concordant, 

though this is a function of the random generation method of source U2.  In this case 

study, reliable sources G and H were shown to be discordant.  As reliable information 

sources can provide errors in their reports, discordance among reliable sources can be 

expected to occur on real world data sets with some frequency. 

One view of the results of this case study may be that not discerning source H as a 

definite reliable source is an error.   However, the point of the methodology is to focus 

 
Figure VI-10 Visualization of Information Sources' Reporting 
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SNA analysts’ attention to discrepancies and patterns existing with the social network 

data collected.  In this case study, the methodology identifies two sets of sources, 

generally reporting on different aspects of the social network, but when examining the 

minor overlap in their reporting, there exists strong disagreement.  Utilizing the 

developed methodology, a SNA analyst conducting analysis on this case study 

quantitatively identifies the discrepancies in the information sources’ reports, leading to 

further investigation, potentially of sources H and U2, to draw conclusions on the 

reliability of the sources. 

6.4 SNA Impact of Imperfect Information 

This section investigates the impact of utilizing imperfect social network data 

when conducting social network analysis.  Social Network Analysis measures, described 

in detail in Section 2.2, are applied to various social network models to demonstrate the 

potential difference in analytical results and conclusions.  Several social network models 

are used to compare results.  The full 38 core member network from Figure VI-1 is used 

as the true underlying social network, denoted as the Ground Truth model.  A social 

network model composed of all six information sources, an All Sources model, is used to 

represent the traditional SNA practice of utilizing all of the social network data provided 

by any information source.  A Reliable Sources model, constructed from the four reliable 

information sources, Ms. E, Ms. G, Ms. H, and Ms. CC, represents the ideal case, the best 

model that can be constructed with this set of information sources.  Finally, a social 

network model constructed using the three information sources, Ms. E, Ms. G, and Ms. 

CC, identified as reliable by utilizing the methodology.  This model resulting from 
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application of the developed methodology is referred to as the Selected Sources model.  

Table VI-8 summarizes the four social network models being compared in this section, 

visualized in Figure VI-10 through Figure VI-14.  Comparison among these social 

network models will demonstrate the difference in results from using all social network 

information sources and utilizing the methodology. 

 

Table VI-8 Models' Description 
Model Description 

Ground Truth
Social network model (Figure VI-1) as presented in Natarajan 
2006.  It represents the true underlying social network model for 
this demonstration. 

All Sources

All sources’ (E, G, H, CC, U1, and U2) reporting included.  
Inclusion of all social network information sources (in the absence 
of a priori information) is a traditional, common approach 
employed by SNA analysts. 

Reliable Sources

Only reporting from E, G, H, and CC included. 
This is the best possible model from this collection of social 
network information sources.  All reports from reliable 
information sources are included, and unreliable sources’ reports 
are discarded. 

Selected Sources

Only reporting from E, G, and CC included. 
This is the social network model constructed from applying the 
methodology and selecting information sources E, G, and CC as 
reliable. 
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Figure VI-11 Visualization of Ground Truth Social Network Model 
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Figure VI-12 Visualization of All Sources Social Network Model 



www.manaraa.com

 

 

 

V
I-24 

 
Figure VI-13 Visualization of Reliable Social Network Model 
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Figure VI-14 Visualization of Selected Social Network Model 
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6.4.1 SNA Network Measures. 

Table VI-9 displays a comparison of SNA network measures’ values for the four 

examined social network models.  The SNA network measures are defined in Section 

2.2.2.  The number of nodes network varies between the four models, as can be expected.  

For this case study, it is worth noting, that extraneous actors not relevant to the 

underlying social network can not be included in any of the models.  Conversely, it is 

possible for unreliable information sources to report extraneous relationships as evident 

by the All Sources model containing more edges that the Ground Truth model.  The 

remaining SNA network measures investigated in Table VI-9 appear to produce similar 

results across the models with the exceptions of average clustering coefficient and degree 

correlation.  All of the social network models show substantial departures from the 

Ground Truth model.  These SNA network measures’ results may be indicative of the 

various measures’ sensitivities to imperfect data, with the average clustering coefficient 

affected greater than the other measures. 

 

Table VI-9 Model Comparison with SNA Network Measures 
Social Network Models 

SNA Network Measures 
Ground 
Truth 

All 
Sources 

All 
Reliable 

Selected 
Sources 

Number of Nodes 38 38 30 27 
Number of Edges 85 92 46 37 

Density 0.121 0.131 0.106 0.105 
Diameter 4 4 5 4 

Mean Path Length 0.433 0.456 0.395 0.440 
Characteristic Path Length 0.421 0.443 0.367 0.426 

Avg. Clustering Coefficient 0.457 0.258 0.650 0.612 
Degree Correlation -0.486 -0.219 -0.637 -0.729 
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6.4.2 SNA Nodal Measures. 

SNA analysts generally use SNA nodal measures to rank the importance of actors 

participating in the social network.  As discussed in Section 2.2.1, commonly used 

centrality measures include: degree centrality, closeness centrality, betweenness 

centrality, and eigenvector centrality.  This section examines how individual actors score 

across the social network models.  The All Reliable and Selected Sources network 

models do not possess all of the actors and those nodes are identified as missing. 

SNA analysts are generally more concerned about an actor’s ranking in 

comparison to the other actors for a given centrality measure and not the actors’ raw 

scores.  The various rankings of the actors across the different measures can be examined 

statistically through the use of rank correlation measures, specifically Spearman’s ρ and 

Kendall’s τ.  Spearman’s ρ is equivalent to the Pearson correlation on the ranks without 

the presence of ties.  If ties are present, the tied values are assigned the average of the 

ranks (Conover, 1971, pp. 245-246).  Kendall’s τ is based upon comparisons of pairs of 

observations drawn from both samples (Conover, 1971, p. 249).  Spearman’s ρ generally 

produces a larger value than Kendall’s τ (Conover, 1971, p. 251). 

6.4.2.1 Degree Centrality. 

Examining the actors’ rankings according to degree centrality as presented in 

Table VI-10, it appears that degree centrality is rather robust to deviations from the 

underlying social network.  The actors possessing the largest degree centrality scores, 

reflected in a ranking of 1, 2, 3, …, and so forth, are relatively consistently identified by 

all four models.  However, there are noted exceptions.  The All Sources model identified 
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actor F of possessing the 6th highest degree centrality score.  In Ground Truth model actor 

F is tied for the 25th ranking.  This discrepancy results from the unreliable sources 

associating multiple false relationships to actor F.  Actor F’s degree centrality rankings 

demonstrate of how false reporting can increase, whether intentionally or mistakenly, the 

relative importance of an actor. 

The developed methodology can not detect if inappropriate information is 

included in the social network model, but attempts to prevent its inclusion be assisting the 

SNA analyst in assessing the information sources providing the data.  The methodology 

developed here only aids assessment information sources, with the intention of accepting 

or rejecting all data provided by reliable or unreliable sources respectively.  Assessing 

data elements individually in the social network model would enable construction of the 

ideal model.  Without utilizing a priori information, there is no currently available 

methodology that assesses individual data elements of a social network model and 

determines the impact upon overall conclusions regarding actor importance and other 

SNA results. 

Examining the rank correlations of degree centrality across the four social 

network models, presented in Table VI-11, shows some interesting patterns.  Of interest 

is that the All Sources model, representing the traditional SNA analyst practice, possesses 

the lowest rank correlation with the Ground Truth model, of 0.34 and 0.27 for 

Spearman’s ρ and Kendall’s τ, respectively.  Additionally, the Selected Sources model, 

generated by employing the methodology, possesses a moderate to high rank correlation,  
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Table VI-10 Degree Centrality Actor Rankings by Social Network Model 
Social Network Model 

Actor 
Ground 
Truth 

All 
Sources

Reliable 
Sources 

Selected 
Sources 

DD 1 1 1 1 
X 2 3 3 3 

CC 3 2 2 2 
M 4 37 Missing Missing 
Y 4 18 7 4 

BB 6 6 4 15 
FF 6 10 10 6 
J 8 6 20 Missing 

AA 8 31 20 15 
II 8 31 20 15 
K 11 26 20 15 
N 11 18 10 6 
V 11 5 4 15 
W 11 4 4 15 
JJ 15 10 20 15 
A 16 18 10 6 
D 16 10 10 6 
G 16 18 7 4 
H 16 10 7 Missing 
I 16 18 10 Missing 
O 16 10 10 6 
S 16 31 10 6 
Z 16 6 10 6 

HH 16 26 Missing Missing 
B 25 18 20 15 
C 25 26 10 6 
F 25 6 Missing Missing 
L 25 31 Missing Missing 
T 25 31 Missing Missing 
U 25 18 Missing Missing 
EE 25 10 10 6 
GG 25 26 Missing Missing 
LL 25 37 Missing Missing 
E 34 31 20 15 
P 34 10 20 15 
Q 34 18 20 15 
R 34 26 20 15 

KK 34 10 20 15 
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0.69 and 0.68, to the Reliable Sources model, the best model possible with this collection 

of sources for this example. 

Comparing current SNA practice against performance obtained from employing 

the methodology, the Selected Sources model possesses greater rank correlations with 

Ground Truth than the All Sources model in this instance.  The Selected Sources model 

possesses rank correlations of 0.43 and 0.37, for Spearman’s ρ and Kendall’s τ 

respectively, to the Ground Truth, which is greater than the All Sources model’s rank 

correlations of 0.34 for Spearman’s ρ and 0.27 and Kendall’s τ.  For this example, 

employing the methodology generates a more accurate representation of actors’ 

importance in terms of degree centrality in comparison with the common SNA practice of 

including data from all available information sources. 

 

Table VI-11 Degree Centrality Rank Correlations 

 
Ground 
Truth 

All 
Sources

Reliable 
Sources 

Selected 
Sources 

Ground Truth 0.34 0.55 0.43 
All Sources 0.27 0.61 0.33 

Reliable Sources 0.48 0.53 0.69 
Selected Sources 0.37 0.28 0.68 

upper triangle: Spearman's ρ 
lower triangle: Kendall's τ 

 

6.4.2.2 Closeness Centrality. 

In contrast to degree centrality’s rank results, closeness centrality displayed 

greater variability in the actors’ ranking across the four social network models as 

illustrated in Table VI-12.  Actor DD was identified as the most important actor, by 
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closeness centrality scores, by all four social network models.  The Reliable Sources and 

Selected Sources models both exhibited numerous ties beginning at the 8th place ranking.  

Otherwise, examining the top ten individuals in the Ground Truth model, one can see 

how the Selected Sources model identified the majority of those actors, though in a 

different order.  The All Sources model identified actors DD, X, CC, and O as correctly 

being in the top ten individuals.  However, the All Sources model failed to identify the 

remaining top ten members. 

Of interest is Actor A.  Actor A was identified as rank 5, 6 and 7 by the Ground 

Truth, and the Selected Sources and Reliable Sources models, respectively.  In contrast, 

the All Sources assessed Actor A of being tied for 25th in closeness centrality scores.  

This is of interest due to the Reliable Sources and the Selected Sources models are 

subsets of the reporting contained in the All Sources model.  Thus, the extraneous false 

information provided by the unreliable sources resulted in Actor A’s closeness centrality 

score to drop substantially.  This is a reflection of the impact of false information in 

enabling important nodes to appear relatively unimportant through the inclusion of 

extraneous edges in the social network data. 

Examining the closeness centrality rank correlations in Table VI-13, the All 

Sources model again exhibits the worst correlation with the Ground Truth.  The Reliable 

Sources and Selected Sources models possess moderate rank correlation with the Ground 

Truth.  Of note, the Selected Sources model possesses an extremely high rank correlation 

with the Reliable Sources model, which represents the best possible case with this 

particular data set. 
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Table VI-12 Closeness Centrality Actor Rankings by Social Network Model 
Social Network Model 

Actor 
Ground 
Truth 

All 
Sources

Reliable 
Sources 

Selected 
Sources 

DD 1 1 1 1 
X 2 2 6 7 
Y 3 11 2 3 
FF 4 11 8 8 
A 5 25 7 6 
N 5 18 8 8 
O 5 4 5 5 
G 8 11 2 3 

CC 8 3 2 2 
U 10 32 Missing Missing 
J 11 7 30 Missing 

AA 11 25 15 15 
BB 11 20 22 23 
II 11 25 15 15 
K 15 23 15 15 
JJ 16 7 15 15 
M 17 37 Missing Missing 

HH 17 33 Missing Missing 
T 19 36 Missing Missing 
D 20 11 8 8 
V 21 11 22 23 
F 22 10 Missing Missing 
Z 22 4 8 8 
S 24 23 8 8 
W 24 16 22 23 
C 26 20 8 8 

EE 26 6 8 8 
B 28 19 26 23 
I 28 29 29 Missing 
E 30 25 15 15 
Q 30 17 15 15 

KK 30 7 15 15 
L 33 34 Missing Missing 

GG 33 35 Missing Missing 
P 35 20 26 23 
H 36 29 28 Missing 
R 37 29 25 22 

LL 37 38 Missing Missing 
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For this example, the Selected Sources model again showed greater rank 

correlation than the All Sources model.  The Selected Sources model possesses a 

Spearman’s ρ correlation of 0.67 compared against the All Source model’s correlation of 

0.44.  Similarly for Kendall’s τ, the Selected Sources model’s correlation is 0.67, which is 

greater than the All Sources model’s correlation of 0.50.  Similar to the results for degree 

centrality, the methodology produced Selected Sources model more accurately 

characterizes actors for closeness centrality in comparison to the All Sources model. 

 

Table VI-13 Closeness Centrality Rank Correlations 

 
Ground 
Truth 

All 
Sources

Reliable 
Sources 

Selected 
Sources 

Ground Truth 0.44 0.68 0.67 
All Sources 0.33 0.54 0.50 

Reliable Sources 0.51 0.42 0.99 
Selected Sources 0.50 0.39 0.96 

upper triangle: Spearman's ρ 
lower triangle: Kendall's τ 

 
 

6.4.2.3 Betweenness Centrality. 

The actor rankings based on betweenness centrality of Table VI-14 showed a 

substantial departure in rankings agreement between the All Sources model and the 

Ground Truth.  Actors DD, X, and CC were correctly identified as important by the All 

Sources model.  However, excluding those three identifications, the remaining rankings 

substantially differ from the Ground Truth.  In this instance, the false data in the All 

Sources model is obscuring the true importance, with respect to betweenness centrality, 

of a majority of the actors in the network.  The Reliable Sources model and the Selected 
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Sources models both possess numerous ties at ranks 11 and 8, respectively.  Both of these 

models correctly identified the top four actors in the network, with respect to 

betweenness centrality, but due to the numerous ties, drawing conclusions beyond the top 

four for the Selected Sources model and the top 10 for the Reliable Sources is difficult. 

The betweenness centrality rank correlations in Table VI-15 again show the All 

Sources model exhibiting the lowest rank correlation with the Ground Truth.  The 

Selected Sources model shows high correlation with the Reliable Sources model’s results 

though this can be impacted by the numerous ties in the betweenness centrality scores. 

For this example, the difference between the rank correlations of the Selected 

Sources model and the All Sources model with the Ground Truth were the largest 

observed on the SNA nodal measures examined here.  The Selected Sources model’s rank 

correlations of 0.60 and 0.52, for Spearman’s ρ and Kendall’s τ respectively, were 

substantially larger than the All Sources model’s rank correlations of 0.21 and 0.15.  In 

this case, for betweenness centrality, there are large discrepancies between relative actor 

importance between the methodology produced Selected Sources model and the common 

practice All Sources model, with the Selected Sources model exhibiting greater accuracy 

in terms of alignment with the Ground Truth.   
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Table VI-14 Betweenness Centrality Actor Rankings by Social Network Model 
Social Network Model 

Actor 
Ground 
Truth 

All 
Sources

Reliable 
Sources 

Selected 
Sources 

DD 1 1 1 1 
X 2 4 2 2 

CC 3 2 3 3 
Y 4 21 4 4 
FF 5 27 11 8 
BB 6 20 9 8 
AA 7 22 11 8 
N 8 14 11 8 
M 9 35 Missing Missing 
K 10 18 11 8 
J 11 12 11 Missing 
A 12 23 8 7 
II 13 32 11 8 
O 14 17 4 4 
Z 15 3 11 8 
G 16 19 4 4 
U 16 29 Missing Missing 
V 18 7 7 8 

HH 19 31 Missing Missing 
D 20 26 11 8 
W 21 6 9 8 
T 22 34 Missing Missing 
JJ 23 9 11 8 
F 24 11 Missing Missing 
S 25 35 11 8 

LL 26 35 Missing Missing 
B 27 25 11 8 
C 27 35 11 8 
E 27 5 11 8 
H 27 28 11 Missing 
I 27 16 11 Missing 
L 27 33 Missing Missing 
P 27 10 11 8 
Q 27 15 11 8 
R 27 24 11 8 

EE 27 8 11 8 
GG 27 30 Missing Missing 
KK 27 13 11 8 
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Table VI-15 Betweenness Centrality Rank Correlations 

 
Ground 
Truth 

All 
Sources

Reliable 
Sources 

Selected 
Sources 

Ground Truth 0.21 0.60 0.60 
All Sources 0.15 0.38 0.32 

Reliable Sources 0.52 0.31 0.88 
Selected Sources 0.52 0.26 0.85 

upper triangle: Spearman's ρ 
lower triangle: Kendall's τ 

 
 

6.4.2.4 Eigenvector Centrality. 

Eigenvector centrality exhibited the greatest variability in rankings between the 

four social network models as illustrated in Table VI-16.  All of the models agreed upon 

Actor DD possessing the largest eigenvector score.  The Reliable Sources and Selected 

Sources models both possessed numerous ties in actor scores. 

Table VI-17 displays the rank correlations for eigenvector centrality.  Eigenvector 

centrality was the only SNA nodal measure examined here where the All Sources model 

possessed a higher rank correlation to the Ground Truth than the other social network 

models for this example.  The Selected Sources model possesses an extremely high 

correlation with the Reliable Sources model.  The All Sources model only differs from 

the Reliable Sources model in that it possesses false information.  That this inclusion of 

false information improves the All Sources’ eigenvector centrality rank correlation with 

Ground Truth calls into question the effectiveness of eigenvector centrality in the 

presence of imperfect social network data. 

For this data set, eigenvector centrality was the only occurrence where the All 

Sources model exhibited better rank correlation with the Ground Truth than the Selected  
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Table VI-16 Eigenvector Centrality Actor Rankings by Social Network Model 
Social Network Model 

Actor 
Ground 
Truth 

All 
Sources

Reliable 
Sources 

Selected 
Sources 

DD 1 1 1 1 
X 2 2 12 12 
Y 3 15 10 10 
FF 4 7 3 3 
CC 5 3 2 2 
II 6 29 14 14 
J 7 6 30 Missing 
K 8 27 14 14 
N 9 17 3 3 

BB 10 14 23 23 
M 11 37 Missing Missing 

AA 12 30 14 14 
JJ 13 19 14 14 
G 14 16 10 10 
A 15 24 21 21 
O 16 8 13 13 
V 17 5 25 23 
D 18 9 3 3 
S 19 25 3 3 
W 20 4 23 23 
U 21 26 Missing Missing 
Z 22 11 3 3 
C 23 18 3 3 

EE 23 13 3 3 
HH 25 31 Missing Missing 

I 26 28 29 Missing 
B 27 22 27 23 
F 28 10 Missing Missing 
T 29 36 Missing Missing 
E 30 33 14 14 
Q 30 21 14 14 

KK 30 12 14 14 
H 33 20 26 Missing 
L 34 35 Missing Missing 

GG 34 34 Missing Missing 
P 36 23 27 23 

LL 37 38 Missing Missing 
R 38 32 22 22 
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Table VI-17 Eigenvector Centrality Rank Correlations 

 
Ground 
Truth 

All 
Sources

Reliable 
Sources 

Selected 
Sources 

Ground Truth 0.52 0.41 0.39 
All Sources 0.38 0.34 0.37 

Reliable Sources 0.29 0.27 1.00 
Selected Sources 0.29 0.28 0.99 

upper triangle: Spearman's ρ 
lower triangle: Kendall's τ 

 
 

Sources model.  The All Sources model exhibited a Spearman’s ρ correlation of 0.52 with 

the Ground Truth, compared against the Selected Sources model’s rank correlation of 

0.39.  For Kendall’s τ, The All Sources model’s correlation of 0.38 was greater than the 

Selected Sources model’s rank correlation of 0.29.  For this case, the All Sources model 

possessed the greatest rank correlation with the Ground Truth of all examined models. 

6.5 Conclusions 

Some of these patterns in the rank correlations may result from inherent 

characteristics of the SNA nodal measures (Guzman, 2012).  Degree centrality appears 

rather robust to imperfect social network data in comparison to the other SNA nodal 

measures for this data set.  In contrast, eigenvector centrality appears to be the most 

susceptible to imperfect social network information for this case study.  Regardless, the 

impact of imperfect social network information is displayed in the variability of the 

different models’ actor rankings in comparison to the Ground Truth representing the true 

underlying social network. 

For the four SNA nodal measures examined here, the Selected Sources model, 

derived from employing the methodology, exhibited greater rank correlation with the 
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Ground Truth than the All Sources model, representing a traditional practice of SNA 

analysts, for three of the measures, with the exception of eigenvector centrality.  This 

calls into question the effectiveness of basing decisions upon SNA results stemming from 

models constructed from data provided by unvetted information sources.  Unvetted 

information sources can be an avenue for imperfect social network information to be 

included in the model.  As discussed in Section 2.4, the inclusion of imperfect social 

network information impacts SNA nodal measures’ scoring of actors within the network 

(Costenbader & Valente, 2003; Sterling, 2004; Borgatti, Carley, & Krackhardt, 2006; 

Kossinets, 2006; Kim & Jeong, 2007). 

6.6 Chapter Summary 

This chapter presented an employment of the developed methodology in a case 

study format based on real world social network data.  Unfortunately, as the raw 

information used to create the social network model, particularly the discarded data not 

included in the model, are unavailable, social network information sources had to be 

artificially generated.  The reliable sources were generated in a manner consistent with 

OPSEC considerations of dark network organizations.  The unreliable sources were 

generated using a random network generation technique, similar in nature to creating an 

Erdös-Rényi random graph.  Using the generated social network information sources, the 

methodology was employed to test its ability to discern reliable and unreliable sources.  

The impact of the various possible social network models that could be constructed from 

this data was investigated.  Overall, the social network model developed from application 

of the methodology displayed greater correlation to the Ground Truth model in this 
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example when examining the actor rankings by various, commonly applied SNA nodal 

measures as compared against the traditional SNA analyst practice of including 

information from all social network information sources.  The next chapter presents the 

conclusions and recommendations for this research. 
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VII. Conclusions and Recommendations 

This chapter summarizes the contributions of the methodology developed in this 

research.  First, the methodology’s assumptions and limitations are discussed.  The 

theoretical contributions are then reviewed.  Following the theoretical contributions, the 

practical contributions of this research to a SNA analyst are highlighted.  Future 

recommended work that continues and extends the research conducted here is identified.  

Finally, other potential applications are explored. 

7.1 Assumptions and Limitations 

The methodology utilizes several assumptions commonly applied to informant 

accuracy in social network analysis as overviewed in Section 2.7.3.  These assumptions 

precipitate several inherent limitations of the methodology.  However, these limitations 

are present in every technique currently available to SNA analysts facing the information 

source assessment problem.  This research has produced developments that address some 

of the limiting aspects of these assumptions. 

7.1.1 Assumptions. 

The four assumptions presented by Romney and Weller (1984) apply to the 

methodology and influence several limitations upon SNA analysts employing the 

methods developed in this research. 

7.1.1.1 Single Underlying Social Network. 

The methodology assumes that information sources are reporting data of a true 

underlying social network.  This corresponds to the first assumption as presented by 
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Romney and Weller (1984): “There exists an objective set of “facts” or reality pertaining 

to the pattern of interaction of the group under investigation (Romney & Weller, 1984, p. 

61).”  This assumption can be violated if an analyst improperly defines the social network 

under investigation.  Improper or imprecise boundary specification can cause irrelevant 

sources to be incorporated into the collection of information sources or relevant social 

network actors to be excluded from the reporting and subsequent analysis.  These 

additional sources would be considered unreliable sources as the information they are 

reporting does not pertain to the social network model the SNA analyst is attempting to 

construct.  The methodology may be able to correctly identify these sources as unreliable, 

but the inclusion of these inappropriate sources increases the non-zero probability of an 

incorrect classification.  In the experimentation, one of the factors was the percentage of 

sources that are reliable.  The inclusion of non-relevant sources in effect, decreases the 

percentage of reliable sources in the collection of sources. 

Improper boundary specification can occur in another manner.  Sources may be 

reporting on the correct underlying social network, but may be reporting on different 

relation types, as presented in Table II-1, that are outside the specified boundary.  These 

sources could be reporting reliable information, but confounding it with information that 

is unreliable due to the boundary specification.  For example, if a criminal organization is 

under investigation, and some sources may report relationships among actors that are 

based on common participation in criminal activities and other sources may report 

information based upon cooperation in criminal activities and familial relationships.  If 

familial relations are not a basis for the criminal organization’s structure, the sources 

reporting familial relations may be deemed unreliable as they could be presenting 



www.manaraa.com

 

VII-3 

 

relationships unconfirmed by other information sources.  Including source provided 

irrelevant information may cause misclassification of sources during the source 

comparison phase of the methodology. 

However, an advantage of employing the methodology developed in this research 

is the potential ability to evaluate the efficacy of different data collection means, 

techniques, and technologies.  For example, a criminal organization is under investigation 

and social network data is being provided by informants and electronic communications 

monitoring.  If the data being reported is properly screened to consider the boundary 

specification, i.e. communications only relevant to the workings of the criminal 

organization are included, the methodology developed here can assess the reliability of 

the informants and the communications monitoring.  Utilizing the methodology, the 

information sources’ reports are used to determine the likelihood of reliability for the 

informants and the electronic communications.  Specific informants may be discovered to 

be providing information with the objective of misleading investigating authorities.  It is 

also possible that the criminal organization’s members are spoofing the electronic 

communications monitoring by conducting fake conversations with irrelevant actors.  

Assessing the reliability of the sources through the methodology may determine that for 

some dark network organizations certain data collection methods, such as electronic 

monitoring is inappropriate due to reliability issues when constructing the social network 

model. 
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7.1.1.2 Sources’ Network Perspective. 

It is assumed that information sources only possess partial knowledge of the 

underlying social network.  It is assumed no one source has a complete picture of the 

social network.  Additionally, not only do information sources only have partial 

information, the data they report varies in amount and in the portions of the social 

network they report upon.  “Individuals vary in the extent to which they know all the 

facts or reality pertaining to the pattern of interaction of the group.  We refer to this as 

knowledge (Romney & Weller, 1984, p. 61).”  The methodology developed in this 

research, specifically accounted for this assumption.  The pairwise source comparisons 

procedure only utilizes information that two sources have in common when determining 

their concordance.  The score weighting component of the methodology accounts for the 

different social network perspective each source possesses.  If this assumption is violated 

and sources are reporting on the same structural aspects of the social network, the 

methodology’s performance may show substantial improvement as the sources’ similarity 

scores will be based on greater amounts of data. 

7.1.1.3 Independence of Sources. 

The independence of the information sources’ reporting is a critical assumption 

for the methodology: “The knowledge of each individual about the group is assumed to 

be independent of the knowledge of every other individual (Romney & Weller, 1984, p. 

61).”  Sources’ assessed reliability is ultimately based on the confirmation and dissention 

of reported dyads.  If the information sources are not independent, then the dyad 

confirmations and dissentions can be called into question.  An example of this which 
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would adversely impact the methodology’s performance is when a single source is 

delivering reports that are being attributed to multiple sources.  For example, if an 

informant is reporting through multiple channels into an intelligence collection system, it 

is conceivable that the reports can be construed as initiating from different information 

sources.  As these multiple sources would be compared against the other sources and 

each other in the pairwise source comparison component of the methodology, the 

informant’s reports would be compared against themselves to assess concordance.  The 

informant’s reports would be scored as very concordant represented by a high similarity 

score and will also be highly weighted since they are reporting on the same aspects of the 

underlying social network structure.  Thus, the informant’s reports will be confirmed…by 

the informant’s own reports!  This confirmation coupled with similar network perspective 

increases the likelihood of the informant to be assessed as a reliable source.  Though, it is 

likely that any information source assessment methodology would be susceptible and the 

resulting classification performance would be quite sensitive to this kind of error. 

7.1.1.4 Source Reporting Overlap. 

The correlation of knowledge between any two subjects is a function of 
the extent to which each has knowledge of the objective reality.  
Specifically, the correlation of knowledge between individual A and 
individual B is the product of the correlation of individual A with the 
“truth” and of individual B with the “truth”.  (Romney & Weller, 1984, p. 
61) 

Social network information source assessment is based upon confirming or 

rejecting supplied information.  The confirmation or dissention can be based upon an 

existing social network model, or a probabilistic model using Bayesian inference as in 

Section 2.6.  The methodology developed in this research utilizes other sources’ reporting 
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to confirm or question an individual source’s reports.  The source comparison is 

accomplished on a dyad by dyad basis.  Inherent in this approach is that a source’s 

information is able to be compared against other sources’ reports.  Without overlap of 

sources’ reporting, the methodology presented here, consensus structure aggregation and 

Butt’s Bayesian approach are ineffective. 

7.1.2 Limitations of Conducting SNA on Dark Networks. 

Conducting SNA on dark network organizations is accompanied by a unique set 

of issues that are not prevalent in traditional applications of SNA.  Dark network actors 

may be conducting several techniques to frustrate data collection efforts.  These dark 

network actor applied OPSEC techniques exacerbate the imperfect data problem 

normally associated with SNA. 

7.1.2.1 Deceptive Information Sources. 

One problem that is probably quite rare in traditional SNA applications is 

deceptive information sources.  Deceptive sources’ objective is the intentionally provide 

information to the data collection agent that is incorrect.  To maximize the long term 

effects, deceptive sources begin by providing correct information in order to gain the data 

collector’s trust.  After the data collector’s trust has been obtained, the deceptive source 

then introduces false information to deceive the analysis.  The deceptive source may 

initially introduce false information with true information to obscure the false 

information.  Over time, the ratio between false and true information can gradually shift 

to where the majority of the information being provided is incorrect. 
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An alternative model of a deceptive source is to provide true information until a 

significant time or event.  At that point, false information is introduced with the goal of 

initiating a major disruption to the analysis.  This strategy, a one big score, has the 

duplicitous informant waiting until an opportune time before providing false information 

to the data collector. 

Both of these deceptive source strategies generate two effects.  First, they 

confound the analysis with false data with the goal of inhibiting effective decision-

making.  Second, they attempt to corrupt the data collection system by discrediting 

reliable sources.  As deceptive sources initially appear to be reliable, over time, they 

become a basis by which other sources are vetted.  By initially assessing these deceptive 

sources as reliable, information sources acquired later maybe rejected as unreliable due to 

the false information being provided by the deceptive sources. 

7.1.2.2 Practical Worst Case. 

The worst case in practice for a SNA data collection effort on dark networks is 

one that faces multiple colluding deceptive sources.  With collusion, deceptive sources 

are confirming each others reports.  This confirmation leads SNA analysts to believe that 

the deceptive sources are reliable and they may even discount reliable sources due to 

dissentions with the deceptive sources.  The multiple colluding deceptive sources can, in 

some instances, co-opt the data collection system, in that, all of the information it is 

acquiring originates from the colluding deceptive sources and it actively ignores 

reporting from other sources. 
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7.1.2.3 Mitigating Factor. 

There exists a mitigating factor—if proper OPSEC has been conducted, 

information sources are generally not aware of what social network information the SNA 

analyst possesses.  The reporting sources are providing information and do not have 

access to, or even be aware of, the other reporting sources.  The reporting sources are 

providing information in a vacuum.  They are unaware of the data collector’s assessment 

of their reliability, and thus, it is difficult for the information sources to tailor their 

reporting to attempt to influence SNA analysts’ conclusions. 

7.2 Theoretical Contributions 

The research conducted in this dissertation lead to several theoretical 

contributions.  The developed methodology presented here was designed to address gaps 

in social network analysis methodology for constructing social network models in the 

presence of imperfect information sources.  Thus, the methodology addresses needs for 

SNA and these practical contributions are discussed in Section 7.3.  During the course of 

conducting the research several theoretical advancements were achieved and are depicted 

in Figure VII-1.  This section describes those theoretical contributions. 

7.2.1 Binary Similarity Measures Selection Methodology. 

Binary similarity and dissimilarity measures have been introduced and developed 

for use in various academic disciplines.  This has led to a wide selection of available 

measures with 105 being identified in this research.  For comparison, the most complete 

listings of binary similarity measures discovered in the literature stems from a 2008 PhD 

dissertation   cataloguing  76  measures  (Choi, 2008)   and  a  2011  book   containing  75  
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measures (Eidenberger, 2011).  This study assembled and identified 105 unique binary 

similarity and dissimilarity measures.  It also determined measures that are algebraically 

equivalent to other measures, and identified measures referenced by multiple names in 

the literature spanning several academic disciplines.  In the course of this research, a 

methodology was developed to select appropriate binary measures dependent upon the 

intended application.  Prior to this development, measures were selected according to 

predominantly subjective assessments of the measures characteristics.  The methodology 

was demonstrated in Chapter IV, reducing the 105 measures to a subset of seven 

measures suitable for social network information source assessment.  This 

methodological framework can be used to select appropriate binary similarity measures 

 
Figure VII-1 Methodology with Theoretical Contributions 
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in applications other than the social network information source assessment function 

discussed in this dissertation. 

7.2.2 Source Reporting Comparison Methodology. 

This research was conducted in pursuit of comparing and assessing information 

sources reporting social network information.  This research led to the development of a 

new methodology based upon pairwise comparisons that examined independent 

portrayals of the overall network and evaluated the concordance among these reports.  

Network models are common representations of many real world systems, yet little 

research has been done on proper data collection to construct these models.  It is assumed 

that many applications are similar to social network analysis in that they draw data from 

multiple information sources.  Information source assessment to determine information 

reliability is crucial to proper network model construction.  

The methodology assesses information sources’ reliability based solely upon the 

network information they report.  The lack of required a priori information or estimates 

makes this methodology’s approach novel.  It conducts comparisons to other information 

sources’ reports to identify concordance and dissentions among the sources.  This 

information is presented in a visual depiction to the analyst to aid their decision of which 

information sources to ultimately include in the network model representation.  

Additionally, quantification of the sources’ concordance is accomplished and sources’ 

information can be included in the network model if an analyst specified threshold is 

achieved. 
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7.2.3 Weighting of Source Reporting. 

Information sources reporting network information may only present data 

reflecting a portion of the overall network.  This can result from the information source’s 

perspective of the network, in which the source only has access to specific 

subcomponents of the overall graph.  This research suggests a source weighting 

mechanism to deal with information sources’ perspective.  Its inclusion in the developed 

methodology ensures that sources reporting on unique portions of the network are not 

penalized due to non-concordance with other sources providing information.  It 

additionally enables network substructures that benefit from several sources’ 

confirmations to serve as a litmus test for evaluating sources reporting on the same 

structures. 

7.2.4 Information Sources Clustering Methodology. 

The developed methodology presented in this research enabled clustering of 

information sources in accordance with their levels of pairwise concordance.  This was 

accomplished by the novel approach of utilizing fuzzy clustering on a weighted 

multidimensional scaling (MDS) visualization.  Weighted MDS enhances the SNA 

analysts’ immersion in the data, by allowing them to visualize the information sources’ 

concordance.  The methodology’s capability to visualize information sources’ 

concordance is a new development in the fields of social network analysis and network 

science.  Applying fuzzy clustering allows various thresholds for information source 

inclusion into the final social network model to be examined.  Before the development of 

the methodology in this research, information source inclusion and exclusion into a 
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network model was based on arbitrary, sometimes subjective, rules specified by the 

analyst.  The methodology developed in this research is the first known non-Bayesian 

quantitative technique for network models. 

7.2.5 DOE with Quantile Regression. 

The analysis of the experimentation utilized design of experiments (DOE) with 

quantile regression.  Applying quantile regression to DOE has not been documented in 

the literature.  This is not surprising as quantile regression is a relatively new introduction 

as a statistical technique.  However, the relaxation of error distributional assumptions 

normally accepted by applying ordinary least squares regression shows a great promise of 

utilizing quantile regression in DOE where applicable.  For the network sciences 

discipline, this research demonstrated the inappropriateness of the normality assumption 

of the error terms in a linear regression model.  While, it is not known how widespread 

this normality assumption fallacy extends in the network sciences, this research is the 

first acknowledgement that it may be present.  The experimentation detected the 

normality assumption violations, and proposed and implemented a solution, quantile 

regression, applying it in the analysis phase of the research.  This research is the first 

known documented application of quantile regression to network models as well as the 

introduction of quantile regression accompanying DOE. 

7.2.6 Examining Classifier Performance. 

The methodology developed in this research can essentially be distilled to a 

classification problem of determining the reliability of information sources.  The 

traditional area under the response operating curve was the performance measure under 
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observation.  The average and in this case, median performance, was statistically 

analyzed in Chapter V.  However, unique to this analysis was examining the extreme 

performance of the classifier.  Utilizing quantile regression, the factors contributing to 

poor performance of the classifier were examined.  This focus on what constitutes and 

drives poor classification performance is a unique and new application of quantile 

regression.  This novel application extends quantile regression while contributing a new 

statistical technique to examining classifiers’ performance. 

7.2.7 Random Social Network Generation. 

In the course of this research, a random network generator was created to produce 

graphs with desired characteristics found in real world social networks.  The Prescribed 

Node Degree, Connected Graph (PNDCG Algorithm) builds upon previous algorithms 

used to generate random SNs for testing metrics and algorithms in SNA.  The PNDCG 

Algorithm has several advantages over the other algorithms in use today.  One of these is 

the reduction in assortative mixing prevalent in graphs generated by the other algorithms.  

Another advantage is the user’s ability to specify a priori the degree distribution for the 

nodes (a characteristic some other algorithms also possess). 

Perhaps the greatest advantage of the PNDCG Algorithm over the other available 

algorithms is its ability to generate a weakly connected graph.  As most analytical 

techniques used in SNA require the use of fully connected graphs, this provides an 

efficient way to generate random networks for testing.  The algorithm can be executed 

several times to generate components that can be combined to form a disconnected 
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network.  Because the user generates each component separately, s/he can prescribe the 

degree distribution of each of the components. 

Two main extensions provide important additional functionality to the PNDCG 

Algorithm.  The first allows the creation of clusters, relational “triangles” in the 

generated random graph.  This is a property common among SNs and among clandestine 

organizations in particular.  The second extension allows for the inclusion of degree 

adjacency information through the use of an exemplar network.  This adaptation was 

driven by the lack of assortative mixing exhibited in cellular organizations.  The tendency 

for other algorithms to connect hubs made it unlikely that the algorithms would generate 

networks with cellular structures.  Through a parameter and an exemplar network, the 

PNDCG Algorithm is able to generate random networks with characteristics similar to 

the exemplar network.  Thus, the generated networks can be built to exhibit desired levels 

of assortative mixing.  The PNDCG Algorithm enables the generation of random graphs 

that better imitiate characteristics found in real world social networks and makes the 

subsequent experimentation results more relevant to SNA analysts. 

7.3 Practical Contributions 

There are several practical contributions for SNA analysts implementing the 

methodology presented in this research.  The procedures defined herein begin to address 

an analytic gap in SNA methodology.  Proper construction of social network models is 

essential before SNA techniques and methodologies can be applied to generate 

meaningful and valid analytical results and conclusions, particularly when applying SNA 

to the dark networks problem set. 
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7.3.1 SNA Analyst Aid. 

First and foremost, the methodology developed in this research is an aid to the 

SNA analyst.  As SNA investigates human behavior, there are numerous complexities 

that are not completely represented by any mathematical formulation of a social network 

model.  Externalities, the analytical objective, and a host of other considerations must be 

addressed when conducting a social network analysis.  Examination of the data collection 

techniques and the associated information sources, up to the development of this 

methodology, has been traditionally accomplished through subjective analyst expertise.  

The development of this methodology presents a quantitative procedure which can be 

applied to aid the SNA analyst in assessing the information sources.  This quantitative 

methodology shows promise of substantial improvement of the traditional subjective 

methods, as it reduces the uncertainty of dealing with idiosyncrasies of expert opinion.  In 

the end, however, subject matter expertise insight should not be ignored. 

7.3.1.1 Quantitatively Compare Source Reporting. 

This methodology develops techniques to quantitatively compare social network 

information sources’ reporting.  There are no limitations to the number or type of sources 

that can be compared.  The sources’ reporting can be assessed as long as some 

confirmations and dissentions with other sources are available.  This methodology’s lack 

of restrictions on sources’ reporting enables a level of flexibility and widespread 

applicability to SNA analysts. 
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7.3.1.2 Sources’ Network Perspective Characterization. 

Unique to this methodology, sources’ perspectives of the underlying social 

network are taken into account when assessing their suitability for incorporating their 

reporting into the social network model.  Dark networks can be large or composed of 

numerous sub-structures.  As a result of their clandestine nature, it is conceivable that 

information sources are limited in their view of the network’s actors and their 

relationships.  Sources reporting on different aspects of the network should not be 

expected to favorably compare against sources examining other network components.  

Conversely, sources reporting on the same aspects of the network are expected to provide 

similar reporting.  Accounting for these phenomenons quantitatively captures heuristics 

subjectively employed by SNA analysts.  Again, the quantitative methods developed in 

this research aid and augment the critical thinking processes of SNA analysts and are not 

considered a replacement for analysts’ heuristics, methods, and intuition. 

7.3.1.3 Operational Risk Considerations. 

An advantage of the methodology presented here is that SNA analysts can specify 

a threshold for information sources’ data inclusion into the social network model.  

Specifying a threshold allows the SNA analyst to account for the operational risk 

associated with the decisions that will result from the analysis.  Varying the threshold 

will enable the construction of several social network models, allowing sensitivity 

analysis to be conducted on the applied SNA methodologies and techniques.  Especially 

when dealing with dark networks, the decisions resulting from SNA can result in a 

substantial expenditure in resources, time, and possibly lives. 
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7.3.2 Each SNA is a Unique SNA. 

Every SNA is a unique analysis and subject matter expertise may prove to be the 

deciding factor between deriving correct assessments or false conclusions.  The analytical 

focus varies and each social network possesses unique characteristics.  It is important to 

note that SNA analysts do not control the social network’s characteristics, but merely 

observe and account for them in the subsequent analysis.  The experimentation conducted 

on the methodology in this research examined a wide range of factors that affect the 

methodology’s performance.  The SNA analyst can not control these factors, and in most 

cases, will have difficulty even estimating the factors’ values.  The design of experiments 

used in this study examined viable ranges for the factors characterizing social networks 

encountered by SNA analysts when dealing with real world dark social networks. 

7.3.3 Trusted Information Sources. 

The methodology possesses an easy to implement adaptation to account for 

trusted information sources.  The methodological procedures can be accomplished 

without initially identifying the trusted sources.  At the completion of the methodology, 

information sources that are classified as concordant with trusted sources can be assessed 

as reliable and discordant sources can be discounted as unreliable.  However, a unique 

aspect of this methodology is the ability to assess trusted sources.  A source may be 

assumed to be trustworthy based on a priori information.  Although, if other information 

sources are concordant with each other but discordant with the trusted source, it may be 

indicative that the assumption of trustworthiness needs to be reexamined. 
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7.4 Recommendations for Future Research 

While conducting this research, several areas were identified that show potential 

promise in future developments.  These stem from theoretical gaps in the literature and 

from capability needs in social network analysis.  First, improvements to the developed 

methodology are discussed leading to general potential research contributions to the 

discipline. 

7.4.1 Methodological Improvements. 

There are several components of the developed methodology discussed in this 

section that may present potential performance improvements if additional developments 

occur.  These identified areas address specific aspects of the developed methodology that 

appear to be fertile ground for theoretical research that could lead to practical application 

betterments. 

7.4.1.1 Incorporation of a priori Information. 

The methodology developed in this research enables assessment of information 

sources based solely on the information they provide.  In real world applications, 

frequently data regarding the information sources is available.  In some instances, this 

data can provide indications of a source’s reliability.  The methodology presented here 

could be extended by incorporation a priori information regarding the reporting sources 

to more accurately classify an information source. 

7.4.1.2 Additional Statistical Clustering Techniques. 

Fuzzy clustering was selected as the clustering technique for its capability of 

providing an indication of each member’s inclusion likelihood for each cluster.  A key 
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parameter of the technique is specifying the number of clusters.  In this experimentation, 

two clusters were selected and exhibited good performance in the overall classification 

methodology.  Numerous statistical clustering techniques exist and others may exhibit 

enhanced methodological performance for this application.  Additional research in 

determining the number of clusters to include in the methodology may substantially 

improve the methodology’s performance under certain conditions. 

7.4.1.3 Investigating Other Weighting Mechanisms. 

During the course of developing the methodology, pairwise source weightings 

were utilized to represent the sources’ varying perspectives of the social network.  The 

weightings account for sources reporting on different substructures within the social 

network.  The weighting mechanism developed in this dissertation measures the overlap 

in reporting between sources, computed by the dividing the number of nodes in common 

by the total number of nodes between two information sources.  Other weighting 

mechanisms could be constructed, perhaps incorporating other data such as 

considerations of the social network’s underlying structure or a priori information 

regarding the information sources. 

7.4.1.4 Investigating Higher Dimensions of Weighted MDS. 

The weighted MDS was applied to provide a visualization to aid the social 

network analyst in indentifying reliable and unreliable information sources.  The 

weighted MDS was conducted in a 2-dimensional space, although mathematically higher 

dimensions can easily be accommodated.  Two dimensions were selected to facilitate 

visualization for analyst consumption.  However, higher dimensions may provide greater 
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insight into source reporting concordance and should be explored if the greater 

complexity increases analyst understanding of the collected data. 

7.4.2 General Discipline Gaps. 

In the course of conducting this research, it became apparent that a major source 

of variation in the methodology’s performance stemmed from variations in the 

underlying graphs.  Network measures were applied to capture this graph to graph 

variation, but it is believed that further developmental opportunities exist in this area. 

7.4.2.1 Characterizing Networks. 

While conducting the statistical analysis of the experimentation, the importance of 

network characteristics as covariates became apparent.  These variables that represented 

structural characteristics of the underlying social network increased the statistical models’ 

explanatory power.  The network measures selected to represent the graph’s 

characteristics were chosen due to their prevalence within the network literature.  

However, most of these network measures are relatively recent additions to the field.  

With their relatively recent introduction in the literature, these network measures may not 

accurately fully characterize graph structures.  The analysis also identified several strong 

correlations existing among the network measures.  A result of these strong correlations, 

and the novelty of these network measures, highlights a potential field of future research.  

Identifying new network measures and characterizing the relationships among them may 

lead to a better understanding of graph theory, network science, and potentially 

uncovering attributes associated with real world data sets.  The analysis conducted in this 

research identified the significance of several of these network measures to the 
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methodology’s performance.  It is conceivable that other SNA methodologies’, 

measures’, and techniques’ performance and interpretation is a function of network 

characteristics and structural attributes.  Further research in identifying suitable network 

measures and their impact upon SNA should be conducted as they could result in 

substantial theoretical and practical application improvements. 

7.4.2.2 Network Population Estimation. 

One defining characteristic of graphs is the number of nodes composing the 

network.  When modeling social networks, boundary specification is an essential initial 

step which defines the social network as a finite set of actors, usually restricted by a 

common actor characteristic, specific relations, or associations of interest.  When 

modeling bright networks, the size of the social network graph is usually known or 

quickly determined during the data collection phase.  When constructing social network 

models of dark networks, the number of actors composing the network is likely unknown 

due to OPSEC efforts by the adversary.  If the size of the network is known, it is 

substantially easier to determine if enough information has been collected to begin SNA 

techniques to assess the network.  If the total number of actors is unknown, it is difficult 

to determine how representative the network model is of the true underlying social 

network. 

Social network information sources generally only report on a portion of the 

underlying social network, and therefore, a single source is unlikely to present an 

accurate count of the total number of involved actors in any but modest sized networks.  

When considering the entire collection of information sources, all actors within the social 
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network may, or may not, be identified and accounted.  It is very likely that with dark 

networks, only limited information sources will be available and will only provide at 

best, a partial presentation of the social network.  Methodologies that estimate the total 

number of actors within a social network based upon various information sources’ reports 

would provide bounds by which to judge if the amount of information is sufficient to 

conduct specific SNA techniques appropriately.  

7.5 Other Potential Applications 

The methodology developed in this research may be relevant to other applications 

beyond network model construction.  This research focused on evaluating the reliability 

of information sources providing social network data.  The general methodology could be 

extended to address information sources providing other types of data.  For example, 

information sources can report event data which details an event occurrence, temporal 

data, and geospatial locations.  Information sources could be assessed on whether there is 

concordance among the sources on the details of the events.  If pairwise source 

concordance measurement can occur, the methodology developed in this research can be 

applied to visualize and cluster sources based on their concordance in reporting. 

Another potential application is the increasing use of recommender systems for 

online marketing.  These recommender systems use customer information to make 

product and service recommendations to market to the customer.  These recommender 

systems are generally proprietary, and it is possible that several recommender systems are 

active to generate customer recommendations.  Evaluating the efficacy of multiple 

recommender systems by examining their performance of generating a customer purchase 
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based upon a recommendation could lead to substantial improvement in business’ 

personalized marketing efforts.  The recommender systems could be evaluated on their 

recommendations’ concordance with other recommender systems and with consumer 

purchases.  This could lead to determining which recommender system is the most 

effective on a customer by customer basis. 

7.6 Conclusions 

This research culminated in developing a methodology to assess information 

sources providing data used to construct social network models.  This addresses a real 

world problem that is faced by the DoD and other agency analysts on a frequent basis.  

As SNA’s acceptance and usage continues to increase, it will become more integrated 

into decision-making processes.  The decisions will be based on analysis resulting from 

applying SNA methods and techniques, but ultimately derives from a social network 

model.  The construction of this social network model has to this point received sparse 

attention despite its importance as a preliminary step of the analytical process. 

The methodology developed in this research provides a unique method to assess 

information sources.  Utilizing this technique, SNA analysts will be able to construct 

more accurate social network models.  Additionally, SNA analysts can provide feedback 

to the data collection system, as the methodology enables them to quantitatively assess 

information sources and potentially identifying reliable and unreliable sources.  Closing 

this communication loop will improve the data collection process and enhance the 

resulting analysis—ideally leading to better decision making when dealing with dark 

networks. 
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Appendix A Binary Similarity and Dissimilarity Measures 

Table A-1 Binary Similarity Measures 
Similarity Measures 
(alternative names) Equation Range 

Anderberg [1] 
8ܽ

8ܽ ൅ ܾ ൅ ܿ
 [0, 1] 

Anderberg’s D [1] 

ఙିఙᇱ

ଶ௡
  where  ߪ = max ሺܽ, ܾሻ ൅ max ሺܿ, ݀ሻ ൅ max ሺ ܽ, ܿሻ ൅

max ሺܾ, ݀ሻ 
and  ߪԢ = max ሺܽ ൅ ܿ, ܾ ൅ ݀ሻ ൅ max ሺܽ ൅ ܾ, ܿ ൅ ݀ሻ 

[0, 1) 

Baroni-Urbani & Buser-I [2] 
√ܽ݀ ൅ ܽ

√ܽ݀ ൅ ܽ ൅ ܾ ൅ ܿ
 [0, 1] 

Baroni-Urbani & Buser-II [2] 
√ܽ݀ ൅ ܽ െ ሺܾ ൅ ܿሻ

√ܽ݀ ൅ ܽ ൅ ܾ ൅ ܿ
 [-1, 1] 

Batagelj & Bren [3] 
ܾܿ
ܽ݀

 [0, ∞) 

Benini (1901) [4] 
ܽ െ ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ

ܽ ൅ minሺܾ, ܿሻ െ ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ
 [1, 2] 

Braun-Blanquet[5] 
ܽ

maxሺܽ ൅ ܾ, ܽ ൅ ܿሻ
 [0, 1] 

Browsing ܽ െ ܾܿ (-∞, ∞) 

Clement [6] 
ܽሺܿ ൅ ݀ሻ
ሺܽ ൅ ܾሻ

൅
݀ሺܽ ൅ ܾሻ
ሺܿ ൅ ݀ሻ

 (0, ∞) 

Cohen’s κ [7] 
2ሺܽ݀ െ ܾܿሻ

ሺܽ ൅ ܾሻሺܾ ൅ ݀ሻ ൅ ሺܽ ൅ ܿሻሺܿ ൅ ݀ሻ
 [-½, 1] 

Cole-I [8] 
ܽ݀ െ ܾܿ

minሺሺܽ ൅ ܾሻሺܽ ൅ ܿሻ, ሺܾ ൅ ݀ሻሺܿ ൅ ݀ሻሻ
 [-1, ∞) 

Cole-II [8] 
ܽ݀ െ ܾܿ

ሺܽ ൅ ܾሻሺܾ ൅ ݀ሻ
 [-1, 1] 

Cole-III [8] 
ܽ݀ െ ܾܿ

ሺܽ ൅ ܿሻሺܿ ൅ ݀ሻ
 [-1, ∞) 

Cosine 
Ochiai-I [9] 

Otsuka [Look in Ochiai paper] 
Driver & Kroeber [10] 

Fowlkes & Mallows [11] 
(Gower & Legendre XII) [12] 

ܽ

ඥሺܽ ൅ ܾሻሺܽ ൅ ܿሻ
 [0, 1] 

d Specific Agreement 
2݀

2ܽ ൅ ܾ ൅ ܿ
 [0, ∞) 

Dennis [13] 
ܽ݀ െ ܾܿ

ඥ݊ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ
 [-1, ∞) 

Dice-I [14] 
Wallace [15] 

Post & Snijders [16] 

ܽ
ܽ ൅ ܾ

 [0, 1] 
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Similarity Measures 
(alternative names) Equation Range 

Dice-II [14] 
Wallace [15] 

Post & Snijders [16] 

ܽ
ܽ ൅ ܿ

 [0, 1] 

Digby [17] 
ሺܽ݀ሻ

ଷ
ସ െ ሺܾܿሻ

ଷ
ସ

ሺܽ݀ሻ
ଷ
ସ ൅ ሺܾܿሻ

ଷ
ସ

 [-1, 1] 

Dispersion 
ܽ݀ െ ܾܿ

ሺܽ ൅ ܾ ൅ ܿ ൅ ݀ሻଶ
 [-⅓, ⅓] 

Doolittle [18] 
Pearson (1926) 

ሺܽ݀ െ ܾܿሻଶ

ሺܽ ൅ ܾሻሺܽ ൅ ܿሻሺܿ ൅ ݀ሻሺܾ ൅ ݀ሻ
 [0, 1] 

Eyraud [19] 
݊ଶሺ݊ܽ െ ሺܽ ൅ ܾሻሺܽ ൅ ܿሻሻ

ሺܽ ൅ ܾሻሺܽ ൅ ܿሻሺܾ ൅ ݀ሻሺܿ ൅ ݀ሻ
 (-∞, ∞) 

Fager & McGowan [20] 

ܽ

ඥሺܽ ൅ ܾሻሺܽ ൅ ܿሻ
െ

1

2ටmaxሺܽ ൅ ܾ, ܽ ൅ ܿሻ
 

[ -½, 1) 

Faith [21] 
ܽ ൅ 0.5݀

ܽ ൅ ܾ ൅ ܿ ൅ ݀
 [0, 1] 

Fleiss [22] 
ሺܽ݀ െ ܾܿሻሾሺܽ ൅ ܾሻሺܾ ൅ ݀ሻ ൅ ሺܽ ൅ ܿሻሺܿ ൅ ݀ሻሿ

2ሺܽ ൅ ܾሻሺܽ ൅ ܿሻሺܾ ൅ ݀ሻሺܿ ൅ ݀ሻ
 (-∞, 1] 

Forbes-I [23] 
݊ܽ

ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ
 [0, ∞) 

Fossum [24] 
Jones & Curtis [25] 

݊ሺܽ െ 0.5ሻଶ

ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ
 (0, ∞) 

Gilbert [26] 
(Ratio of Success) 

ܽ െ
ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ

݊

ܽ ൅ ܾ ൅ ܿ െ
ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ

݊

 [-⅓, 1] 

Gilbert & Wells [27] log ܽ െ log ݊ െ logሺ
ܽ ൅ ܾ
݊

ሻ െ logሺ
ܽ ൅ ܿ
݊

ሻ [0, ∞) 

Gini [28] 
ܽ െ ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ

ඥሺ1 െ ሺܽ ൅ ܾሻଶሻሺ1 െ ሺܽ ൅ ܿሻଶሻ
 ൣെ 4 3ൗ , 0൧

Gleason [29] 
Dice [14] 

Sørenson [30] 
(Coincidence Index) 
(Quotient Similarity) 

Czekanowski [31] 
Nei & Li [32] 

(Genetic Coefficient) 
(Gower & Legendre VII) [12] 

2ܽ
2ܽ ൅ ܾ ൅ ܿ

 [0, 1] 

Goodman & Kruskal Max [33] 
ܽ ൅ ݀ െmaxሺܽ, ݀ሻ െ

ܾ ൅ ܿ
2

1 െmaxሺܽ, ݀ሻ െ
ܾ ൅ ܿ
2

 [-1, 1] 

Goodman & Kruskal Min [33] 
2minሺܽ, ݀ሻ െ ܾ െ ܿ

2minሺܽ, ݀ሻ ൅ ܾ ൅ ܿ
 [-1, 1] 

Goodman & Kruskal Probability [33] 
maxሺܽ, ܿሻ ൅ maxሺܾ, ݀ሻ െ maxሺܽ ൅ ܾ, ܿ ൅ ݀ሻ

1 െmaxሺܽ ൅ ܾ, ܿ ൅ ݀ሻ
 [-⅓, 0] 
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Similarity Measures 
(alternative names) Equation Range 

Goodman & Kruskal’s Lambda [33] 
maxሺܽ, ܾሻ ൅ maxሺܿ, ݀ሻ ൅ maxሺܽ, ܿሻ ൅ maxሺܾ, ݀ሻ െ maxሺܽ ൅ ܿ, ܾ ൅ ݀ሻ െ max

 
ሺܽ ൅ ܾ, ܿ ൅ ݀ሻ

2 െ maxሺܽ ൅ ܿ, ܾ ൅ ݀ሻ െ maxሺܽ ൅ ܾ, ܿ ൅ ݀ሻ
 [0, 1] 

Goodman & Kruskal’s Tau [33] 
ሺܽ െ ሺܽ ൅ ܾሻሺܽ ൅ ܿሻሻଶ ൅ ሺܾ െ ሺܽ ൅ ܾሻሺܾ ൅ ݀ሻሻଶ

ሺܽ ൅ ܾሻ ൅
ሺܿ െ ሺܽ ൅ ܿሻሺܿ ൅ ݀ሻሻଶ ൅ ሺ݀ െ ሺܾ ൅ ݀ሻሺܿ ൅ ݀ሻሻଶ

ሺܿ ൅ ݀ሻ
1 െ ሺܽ ൅ ܿሻଶ െ ሺܾ ൅ ݀ሻଶ

(-∞, -2] 

Gower [34] 
ܽ ൅ ݀

ඥሺܽ ൅ ܾሻሺܽ ൅ ܿሻሺܾ ൅ ݀ሻሺܿ ൅ ݀ሻ
 [0, 1.5] 

Hamann [35] 
Holley & Guilford [36] 

Hubert [37] 
(Gower & Legendre IX) [12] 

ሺܽ ൅ ݀ሻ െ ሺܾ ൅ ܿሻ
ܽ ൅ ܾ ൅ ܿ ൅ ݀

 [-1, 1] 

Harris & Lahey [38] 
ܽሺሺܿ ൅ ݀ሻ ൅ ሺܾ ൅ ݀ሻሻ

2ሺܽ ൅ ܾ ൅ ܿሻ
൅
݀ሺሺܽ ൅ ܾሻ ൅ ሺܽ ൅ ܿሻሻ

2ሺܾ ൅ ܿ ൅ ݀ሻ
 [0, ∞) 

Hawkins & Dotson [39] 
1
2
ሺ

ܽ
ܽ ൅ ܾ ൅ ܿ

൅
݀

ܾ ൅ ܿ ൅ ݀
ሻ [0, 1] 

Inner Product 
(Hamming Complement) [40] 

ܽ ൅ ݀ [0, ∞) 

Intersection ܽ [0, ∞) 
Jaccard [41] 
Gilbert [26] 

(Ratio of Verification) 
Tanimoto [42] 

(Cosine Coefficient) 
(Gower & Legendre III) [12] 

ܽ
ܽ ൅ ܾ ൅ ܿ

 [0, 1] 

Jaccard-3W 
3ܽ

3ܽ ൅ ܾ ൅ ܿ
 [0, 1] 

Johnson (1967)[43] 
ܽ

ܽ ൅ ܾ
൅

ܽ
ܽ ൅ ܿ

 [0, 2] 

Kent & Foster-I [44] 
െܾܿ

ܾሺܽ ൅ ܾሻ ൅ ܿሺܽ ൅ ܿሻ ൅ ܾܿ
 [-⅓, 0] 

Kent & Foster-II [44] 
െܾܿ

ܾሺܿ ൅ ݀ሻ ൅ ܿሺܾ ൅ ݀ሻ ൅ ܾܿ
 [-⅓, 0] 

Köppen [45] 
ሺܽ ൅ ܾሻሺ1 െ ܽ െ ܾሻ െ ܿ
ሺܽ ൅ ܾሻሺ1 െ ܽ െ ܾሻ

 (-∞, ∞) 

Köppen [46] ܽ ൅
ܾ ൅ ܿ
2

 [0, ∞) 

Kuder & Richardson [47] 
Cronbach [48] 

4ሺܽ݀ െ ܾܿሻ
ሺܽ ൅ ܾሻሺܿ ൅ ݀ሻ ൅ ሺܽ ൅ ܿሻሺܾ ൅ ݀ሻ ൅ 2ሺܽ݀ െ ܾܿሻ

 [-2, 1] 

Kuhns [49] 
2ሺܽ݀ െ ܾܿሻ
݊ሺ2ܽ ൅ ܾ ൅ ܿሻ

 [-½, 1] 

Kuhns Proportion [49] 
ܽ݀ െ ܾܿ

݊ ൬1 െ
ܽ

ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ൰ ൬2ܽ ൅ ܾ ൅ ܿ െ
ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ

݊ ൰
 [-⅓, 1) 

Kulczyński-I [50] 
(Gower & Legendre I) [12] 

ܽ
ܾ ൅ ܿ

 [0, ∞) 

Kulczyński-II [50] 
Driver & Kroeber [10] 

(Gower & Legendre X) [12] 

ܽ
2 ሺ2ܽ ൅ ܾ ൅ ܿሻ

ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ
 [0, 1] 
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Similarity Measures 
(alternative names) Equation Range 
Loevinger’s H [51] [52] 

Forbes-II [23] 
Mokken [53] 

Sijtsma & Molenaar [54] 

݊ܽ െ ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ
݊minሺܽ ൅ ܾ, ܽ ൅ ܿሻ െ ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ

 [-1, 1] 

Maron & Kuhns [55] 
ܽ݀ െ ܾܿ

ሺܽ ൅ ܾ ൅ ܿ ൅ ݀ሻ
 (-∞, ∞) 

Maxwell & Pilliner [56] 
2ሺܽ݀ െ ܾܿሻ

ሺܽ ൅ ܾሻሺܿ ൅ ݀ሻ ൅ ሺܽ ൅ ܿሻሺܾ ൅ ݀ሻ
 [-1, 1] 

McConnaughey [57] 
ܽଶ െ ܾܿ

ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ
 [-1, 1] 

Michael [58] 
4ሺܽ݀ െ ܾܿሻ

ሺܽ ൅ ݀ሻଶ ൅ ሺܾ ൅ ܿሻଶ
 [-1, 1] 

Modified Gini [28] 
ܽ െ ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ

1 െ
|ܾ െ ܿ|
2 െ ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ

 ሾ0, 4 3ൗ ሿ 

Mountford [59] 
ܽ

0.5ሺܾܽ ൅ ܽܿሻ ൅ ܾܿ
 [0, 2] 

Pearson & Heron-II  [60] cos ቆ
ܾܿ√ߨ

√ܽ݀ ൅ √ܾܿ
ቇ [-1, 1] 

Pearson-I [61] 
(Coefficient of Chi-square Contingency) 

߯ଶ   where ߯ଶ ൌ
௡ሺ௔ௗି௕௖ሻమ

ሺ௔ା௕ሻሺ௔ା௖ሻሺ௖ାௗሻሺ௕ାௗሻ
 [0, ∞) 

Pearson-II [61] 
(Coefficient of Mean Square 

Contingency) 
ට

ఞమ

௡ାఞమ
  where ߯ଶ ൌ

௡ሺ௔ௗି௕௖ሻమ

ሺ௔ା௕ሻሺ௔ା௖ሻሺ௖ାௗሻሺ௕ାௗሻ
 ሾ0, ට1 2ൗ ሻ 

Pearson-III [62] 
(Coefficient of Racial Likeness) ට

ఘ

௡ାఘ
   where ߩ ൌ

௔ௗି௕௖

ඥሺ௔ା௕ሻሺ௔ା௖ሻሺ௕ାௗሻሺ௖ାௗሻ
 ሾ0, ට1 3ൗ ሻ 

Peirce-I [63] 
ܽ݀ െ ܾܿ

ሺܽ ൅ ܾሻሺܿ ൅ ݀ሻ
 [-1, 1] 

Peirce-II [63] 
ܽ݀ െ ܾܿ

ሺܽ ൅ ܿሻሺܾ ൅ ݀ሻ
 [-1, 1] 

Peirce-III [63] 
ܾܽ ൅ ܾܿ

ܾܽ ൅ 2ܾܿ ൅ ܿ݀
 [0, 1] 

Phi Coefficient 
Yule [64] 

Pearson & Heron-I [60] 
(Fourfold point correlation) 

(binary version of Pearson’s Product 
Moment Correlation Coefficient) [61] 

(Gower & Legendre XIV) [12] 

ܽ݀ െ ܾܿ

ඥሺܽ ൅ ܾሻሺܽ ൅ ܿሻሺܾ ൅ ݀ሻሺܿ ൅ ݀ሻ
 [-1, 1] 

Relative Decrease of Error Probability 
maxሺܽ, ܾሻ ൅ maxሺܿ, ݀ሻ െ maxሺܽ ൅ ܿ, ܾ ൅ ݀ሻ

1 െmaxሺܽ ൅ ܿ, ܾ ൅ ݀ሻ
 [-1, 0] 

Rogers & Tanimoto [65] 
Farkas [66] 

(Gower & Legendre VI) [12] 

ܽ ൅ ݀
ܽ ൅ 2ሺܾ ൅ ܿሻ ൅ ݀

 [0, 1] 

Rogot & Goldberg [67] 
ܽ

ሺܽ ൅ ܾሻ ൅ ሺܽ ൅ ܿሻ
൅

݀
ሺܿ ൅ ݀ሻ ൅ ሺܾ ൅ ݀ሻ

 [0, 1] 
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Similarity Measures 
(alternative names) Equation Range 

Russell & Rao [68] 
(dot product) 

(inner product) 
(Gower & Legendre II) [12] 

ܽ
ܽ ൅ ܾ ൅ ܿ ൅ ݀

 [0, 1] 

Scott [69] 
4ሺܽ݀ െ ܾܿሻ െ ሺܾ െ ܿሻଶ

ሺ2ܽ ൅ ܾ ൅ ܿሻሺܾ ൅ ܿ ൅ 2݀ሻ
 [-1, 1] 

Simpson [70] 
(Ecological Coexistence Coefficient) 

ܽ
minሺܽ ൅ ܾ, ܽ ൅ ܿሻ

 [0, 1] 

Sokal & Michener [71] 
(Simple Matching Coefficient) 

Rand [72] 
Brennan & Light [73] 

(Gower & Legendre IV) [12] 

ܽ ൅ ݀
ܽ ൅ ܾ ൅ ܿ ൅ ݀

 [0, 1] 

Sokal & Sneath-I [74] 
(Gower & Legendre V) [12] 

ܽ
ܽ ൅ 2ܾ ൅ 2ܿ

 [0, 1] 

Sokal & Sneath-II [74] 
(Gower & Legendre VIII) [12] 

2ሺܽ ൅ ݀ሻ
2ܽ ൅ ܾ ൅ ܿ ൅ 2݀

 [0, 1] 

Sokal & Sneath-III [74] 
ܽ ൅ ݀
ܾ ൅ ܿ

 [0, ∞) 

Sokal & Sneath-IV [74] 
(Gower & Legendre XI) [12] 

ܽ
ሺܽ ൅ ܾሻ ൅

ܽ
ሺܽ ൅ ܿሻ ൅

݀
ሺܾ ൅ ݀ሻ ൅

݀
ሺܿ ൅ ݀ሻ

4
 

[0, 1] 

Sokal & Sneath-V [74] 
Ochiai-II [9] 

(Gower & Legendre XIII) [12] 

ܽ݀

ඥሺܽ ൅ ܾሻሺܽ ൅ ܿሻሺܾ ൅ ݀ሻሺܿ ൅ ݀ሻ
 [0, 1] 

Sorgenfrei [75] 
Cheetham & Hazel [76] 

(Correlation Ratio) 

ܽଶ

ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ
 [0, 1] 

Stiles [77] logଵ଴
݊ሺ|ܽ݀ െ ܾܿ| െ

݊
2ሻ

ଶ

ሺܽ ൅ ܾሻሺܽ ൅ ܿሻሺܾ ൅ ݀ሻሺܿ ൅ ݀ሻ
 (-∞, ∞) 

Stuart’s ߬௖ [78] 2ሺܽ݀ െ ܾܿሻ (-∞, ∞) 

Tarantula [79] 
Ample [80] 

ܽ
ሺܽ ൅ ܾሻ

ܿ
ሺܿ ൅ ݀ሻ

ൌ
ܽሺܿ ൅ ݀ሻ
ܿሺܽ ൅ ܾሻ

 [0, ∞) 

Tarwid [81] 
݊ܽ െ ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ
݊ܽ ൅ ሺܽ ൅ ܾሻሺܽ ൅ ܿሻ

 [-1, 1) 

Tversky [82] 
(Feature Contrast Model) 

ܽ െ ܾ െ ܿ (-∞, ∞) 

Warrens-I [83] 
2ܽ െ ܾ െ ܿ
2ܽ ൅ ܾ ൅ ܿ

 [-1, 1] 

Warrens-II [83] 
2݀

ܾ ൅ ܿ ൅ 2݀
 [0, 1] 

Warrens-III [83] 
2݀ െ ܾ െ ܿ
ܾ ൅ ܿ ൅ 2݀

 [-1, 1] 

Warrens-IV [83] 
4ܽ݀

4ܽ݀ ൅ ሺܽ ൅ ݀ሻሺܾ ൅ ܿሻ
 [0, 1] 

Warrens-V [83] 
ܽ݀ െ ܾܿ

minሺሺܽ ൅ ܾሻሺܽ ൅ ܿሻ, ሺܿ ൅ ݀ሻሺܾ ൅ ݀ሻሻ
 [-1, ∞) 
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Similarity Measures 
(alternative names) Equation Range 

Yule Q [84] 
(Coefficient of Association) 

Montgomery & Crittenden [85] 
(Gower & Legendre XV) [12] 

ܽ݀ െ ܾܿ
ܽ݀ ൅ ܾܿ

 [-1, 1] 

Yule Y [64] 
(Coefficient of Colligation) 

√ܽ݀ െ √ܾܿ

√ܽ݀ ൅ √ܾܿ
 [-1, 1] 

 
 

Table A-2 Binary Dissimilarity Measures 
Dissimilarity Measures 

(alternative names) Equation Range 

Chord [86] ඨ2ሺ1 െ
ܽ

ඥሺܽ ൅ ܾሻሺܽ ൅ ܿሻ
ሻ [0, √2] 

Euclidean 
(Pythagorean metric) √ܾ ൅ ܿ [0, ∞) 

Hamming [40] 
Squared-Euclidean 

Canberra [87] 
Manhattan 
CityBlock 
Minkowski 

ܾ ൅ ܿ 
 

[0, ∞) 

Hellinger [88] 2ඨ1 െ
ܽ

ඥሺܽ ൅ ܾሻሺܽ ൅ ܿሻ
 [0, 2] 

Lance & Williams [89] 
Bray & Curtis [90] 

ܾ ൅ ܿ
ሺ2ܽ ൅ ܾ ൅ ܿሻ

 [0, 1] 

Mean Manhattan 
ܾ ൅ ܿ

ሺܽ ൅ ܾ ൅ ܿ ൅ ݀ሻ
 [0, 1] 

Pattern Difference 
4ܾܿ

ሺܽ ൅ ܾ ൅ ܿ ൅ ݀ሻଶ
 [0, 1] 

Shape Difference 
Baulieu [91] 

݊ሺܾ ൅ ܿሻ െ ሺܾ െ ܿሻଶ

ሺܽ ൅ ܾ ൅ ܿ ൅ ݀ሻଶ
 [0, 1] 

Size Difference 
Baulieu [91] 

ሺܾ െ ܿሻଶ

ሺܽ ൅ ܾ ൅ ܿ ൅ ݀ሻଶ
 [0, 1] 

Variance 
ሺܾ ൅ ܿሻ

4ሺܽ ൅ ܾ ൅ ܿ ൅ ݀ሻ
 [0, 0.25] 

Yule Q dissimilarity [84] 
2ܾܿ

ܽ݀ ൅ ܾܿ
 [-1, 1] 
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Appendix B Median Regression Coefficients 

Table B-1 Median Regression Coefficients 

Regressor Coefficient
Lower 

CI 
Upper 

CI 
Significant 
 (05. = ࢻ)

(Intercept) 2.55 2.43 2.70 yes 
A -0.44 -0.61 -0.31 yes 
B -0.14 -0.41 0.04 
C -1.97 -2.16 -1.84 yes 
D 0.67 0.53 0.91 yes 

MeanPath -0.98 -1.18 -0.67 yes 
alpha 0.29 0.20 0.55 yes 

DegreeCorr -0.69 -0.91 -0.36 yes 
A:B 0.02 -0.08 0.27 
A:C 0.19 0.08 0.39 yes 
B:C 0.01 -0.13 0.24 
A:D -0.01 -0.33 0.12 
B:D -0.08 -0.34 0.13 
C:D -0.46 -0.66 -0.22 yes 

A:MeanPath 0.47 -0.12 0.65 
B:MeanPath -0.40 -0.70 -0.04 yes 
C:MeanPath 0.28 0.06 0.54 yes 
D:MeanPath 0.06 -0.20 0.32 

A:alpha 0.14 -0.06 0.30 
B:alpha -0.09 -0.32 0.11 
C:alpha -0.08 -0.42 0.07 
D:alpha -0.01 -0.16 0.21 

MeanPath:alpha -0.01 -0.50 0.47 
A:DegreeCorr 0.62 0.04 0.82 yes 
B:DegreeCorr 0.10 -0.23 0.38 
C:DegreeCorr -0.03 -0.30 0.27 
D:DegreeCorr -0.10 -0.33 0.13 

MeanPath:DegreeCorr -0.07 -0.22 0.07 
alpha:DegreeCorr -0.08 -0.60 0.38 

A:B:C 0.16 -0.17 0.27 
A:B:D -0.03 -0.24 0.23 
A:C:D -0.13 -0.38 0.09 
B:C:D 0.07 -0.30 0.23 

A:B:MeanPath 0.58 0.05 0.98 yes 
A:C:MeanPath 0.61 0.22 1.02 yes 
B:C:MeanPath -0.49 -0.79 -0.08 yes 
A:D:MeanPath 0.02 -0.18 0.42 
B:D:MeanPath 0.25 -0.13 0.73 
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Regressor Coefficient
Lower 

CI 
Upper 

CI 
Significant 
 (05. = ࢻ)

C:D:MeanPath -0.12 -0.39 0.18 
A:B:alpha 0.36 0.07 0.58 yes 
A:C:alpha -0.40 -0.51 -0.04 yes 
B:C:alpha -0.05 -0.25 0.26 
A:D:alpha 0.37 0.18 0.51 yes 
B:D:alpha 0.28 0.10 0.44 yes 
C:D:alpha -0.17 -0.32 0.22 

A:MeanPath:alpha 0.41 -0.42 0.78 
B:MeanPath:alpha -0.02 -0.85 0.45 
C:MeanPath:alpha -0.15 -0.94 0.33 
D:MeanPath:alpha 0.02 -0.67 0.38 

A:B:DegreeCorr 0.10 -0.26 0.42 
A:C:DegreeCorr 0.43 0.10 0.70 yes 
B:C:DegreeCorr -0.25 -0.47 0.21 
A:D:DegreeCorr 0.35 0.12 0.68 yes 
B:D:DegreeCorr 0.45 0.11 0.81 yes 
C:D:DegreeCorr -0.62 -0.98 -0.29 yes 

A:MeanPath:DegreeCorr -0.05 -0.34 0.17 
B:MeanPath:DegreeCorr -0.06 -0.18 0.18 
C:MeanPath:DegreeCorr 0.14 -0.16 0.34 
D:MeanPath:DegreeCorr 0.04 -0.04 0.20 

A:alpha:DegreeCorr 0.29 -0.45 0.66 
B:alpha:DegreeCorr 0.27 -0.21 0.65 
C:alpha:DegreeCorr -0.22 -0.97 0.37 
D:alpha:DegreeCorr -0.35 -0.87 0.15 

MeanPath:alpha:DegreeCorr 0.00 -0.15 0.20 
A:B:C:D 0.11 -0.05 0.43 

A:B:C:MeanPath -0.06 -0.41 0.42 
A:B:D:MeanPath 0.09 -0.26 0.52 
A:C:D:MeanPath 0.09 -0.16 0.51 
B:C:D:MeanPath -0.58 -1.15 0.03 

A:B:C:alpha -0.30 -0.53 0.00 yes 
A:B:D:alpha -0.18 -0.39 0.06 
A:C:D:alpha -0.07 -0.37 0.04 
B:C:D:alpha -0.05 -0.24 0.15 

A:B:MeanPath:alpha 0.25 -0.39 0.94 
A:C:MeanPath:alpha 0.24 -0.41 0.81 
B:C:MeanPath:alpha 0.18 -0.43 0.90 
A:D:MeanPath:alpha -0.11 -0.63 0.76 
B:D:MeanPath:alpha 0.06 -0.65 0.73 
C:D:MeanPath:alpha -0.33 -1.12 0.37 

A:B:C:DegreeCorr -0.29 -0.66 0.07 
A:B:D:DegreeCorr -0.31 -0.51 0.17 
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Regressor Coefficient
Lower 

CI 
Upper 

CI 
Significant 
 (05. = ࢻ)

A:C:D:DegreeCorr 0.51 0.26 0.88 yes 
B:C:D:DegreeCorr 0.10 -0.41 0.30 

A:B:MeanPath:DegreeCorr 0.18 -0.09 0.36 
A:C:MeanPath:DegreeCorr -0.22 -0.44 0.13 
B:C:MeanPath:DegreeCorr -0.10 -0.37 0.14 
A:D:MeanPath:DegreeCorr -0.13 -0.32 0.03 
B:D:MeanPath:DegreeCorr -0.24 -0.46 0.12 
C:D:MeanPath:DegreeCorr 0.25 -0.14 0.46 

A:B:alpha:DegreeCorr -0.09 -0.78 0.89 
A:C:alpha:DegreeCorr 0.19 -0.42 0.83 
B:C:alpha:DegreeCorr 0.07 -0.69 0.46 
A:D:alpha:DegreeCorr -0.06 -0.62 0.68 
B:D:alpha:DegreeCorr 0.11 -0.64 0.80 
C:D:alpha:DegreeCorr -0.19 -0.92 0.59 

A:MeanPath:alpha:DegreeCorr 0.44 0.01 0.71 yes 
B:MeanPath:alpha:DegreeCorr -0.11 -0.38 0.12 
C:MeanPath:alpha:DegreeCorr 0.12 -0.28 0.35 
D:MeanPath:alpha:DegreeCorr -0.04 -0.27 0.13 

A:B:C:D:MeanPath 0.03 -0.83 0.38 
A:B:C:D:alpha -0.02 -0.26 0.10 

A:B:C:MeanPath:alpha 0.34 -0.54 0.97 
A:B:D:MeanPath:alpha -0.77 -1.48 -0.28 yes 
A:C:D:MeanPath:alpha -0.78 -1.33 -0.22 yes 
B:C:D:MeanPath:alpha 0.40 -0.30 1.06 

A:B:C:D:DegreeCorr -0.49 -0.80 -0.10 yes 
A:B:C:MeanPath:DegreeCorr -0.10 -0.41 0.22 
A:B:D:MeanPath:DegreeCorr 0.17 -0.18 0.34 
A:C:D:MeanPath:DegreeCorr -0.12 -0.36 0.21 
B:C:D:MeanPath:DegreeCorr -0.54 -0.94 -0.11 yes 

A:B:C:alpha:DegreeCorr 0.01 -1.09 0.64 
A:B:D:alpha:DegreeCorr -0.81 -1.54 -0.30 yes 
A:C:D:alpha:DegreeCorr 0.03 -0.58 0.80 
B:C:D:alpha:DegreeCorr 0.75 0.15 1.57 yes 

A:B:MeanPath:alpha:DegreeCorr 0.19 -0.07 0.72 
A:C:MeanPath:alpha:DegreeCorr -0.58 -0.94 0.03 
B:C:MeanPath:alpha:DegreeCorr -0.48 -0.84 0.04 
A:D:MeanPath:alpha:DegreeCorr -0.22 -0.49 0.16 
B:D:MeanPath:alpha:DegreeCorr 0.01 -0.22 0.41 
C:D:MeanPath:alpha:DegreeCorr 0.41 0.10 0.74 yes 

A:B:C:D:MeanPath:alpha 0.43 -0.07 1.12 
A:B:C:D:MeanPath:DegreeCorr 0.78 0.30 1.06 yes 

A:B:C:D:alpha:DegreeCorr -0.12 -0.78 0.52 
A:B:C:MeanPath:alpha:DegreeCorr -0.61 -1.23 -0.21 yes 
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Regressor Coefficient
Lower 

CI 
Upper 

CI 
Significant 
 (05. = ࢻ)

A:B:D:MeanPath:alpha:DegreeCorr -0.12 -0.66 0.13 
A:C:D:MeanPath:alpha:DegreeCorr 0.50 -0.01 1.11 
B:C:D:MeanPath:alpha:DegreeCorr -0.15 -0.70 0.25 

A:B:C:D:MeanPath:alpha:DegreeCorr 0.43 0.05 1.02 yes 
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Appendix C Multiple Quantile Regression Models 

Table C-1 Summary of Effects Across Multiple Quantile Regression Models 

Regressor Effect 
Significant 
 (05. = ࢻ)

(Intercept) Positive yes 
A Negative yes 
B Negative yes 
C Negative yes 
D Positive yes 

MeanPath Negative yes 
alpha Positive yes 

DegreeCorr Negative yes 
A:B Positive   
A:C Positive yes 
B:C Mixed   
A:D Mixed   
B:D Negative   
C:D Negative yes 

A:MeanPath Positive   
B:MeanPath Negative yes 
C:MeanPath Negative   
D:MeanPath Mixed   

A:alpha Mixed   
B:alpha Mixed   
C:alpha Positive   
D:alpha Mixed   

MeanPath:alpha Mixed   
A:DegreeCorr Positive yes 
B:DegreeCorr Mixed   
C:DegreeCorr Negative   
D:DegreeCorr Mixed   

MeanPath:DegreeCorr Negative   
alpha:DegreeCorr Mixed   

A:B:C Mixed   
A:B:D Mixed   
A:C:D Mixed   
B:C:D Mixed   

A:B:MeanPath Negative   
A:C:MeanPath Positive   
B:C:MeanPath Negative yes 
A:D:MeanPath Positive   
B:D:MeanPath Positive yes 
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Regressor Effect 
Significant 
 (05. = ࢻ)

C:D:MeanPath Mixed   
A:B:alpha Positive   
A:C:alpha Negative yes 
B:C:alpha Negative   
A:D:alpha Positive yes 
B:D:alpha Mixed   
C:D:alpha Mixed   

A:MeanPath:alpha Positive   
B:MeanPath:alpha Mixed   
C:MeanPath:alpha Negative   
D:MeanPath:alpha Mixed   

A:B:DegreeCorr Mixed   
A:C:DegreeCorr Positive yes 
B:C:DegreeCorr Negative   
A:D:DegreeCorr Positive yes 
B:D:DegreeCorr Positive yes 
C:D:DegreeCorr Negative yes 

A:MeanPath:DegreeCorr Mixed   
B:MeanPath:DegreeCorr Mixed   
C:MeanPath:DegreeCorr Mixed   
D:MeanPath:DegreeCorr Mixed   

A:alpha:DegreeCorr Mixed   
B:alpha:DegreeCorr Positive   
C:alpha:DegreeCorr Negative   
D:alpha:DegreeCorr Mixed   

MeanPath:alpha:DegreeCorr Mixed   
A:B:C:D Mixed yes 

A:B:C:MeanPath Mixed   
A:B:D:MeanPath Mixed   
A:C:D:MeanPath Mixed   
B:C:D:MeanPath Negative yes 

A:B:C:alpha Mixed   
A:B:D:alpha Mixed   
A:C:D:alpha Negative yes 
B:C:D:alpha Mixed   

A:B:MeanPath:alpha Mixed   
A:C:MeanPath:alpha Mixed   
B:C:MeanPath:alpha Positive   
A:D:MeanPath:alpha Mixed   
B:D:MeanPath:alpha Mixed   
C:D:MeanPath:alpha Negative   

A:B:C:DegreeCorr Negative   
A:B:D:DegreeCorr Negative   



www.manaraa.com

 

C-3 

 

Regressor Effect 
Significant 
 (05. = ࢻ)

A:C:D:DegreeCorr Positive yes 
B:C:D:DegreeCorr Mixed   

A:B:MeanPath:DegreeCorr Mixed   
A:C:MeanPath:DegreeCorr Negative   
B:C:MeanPath:DegreeCorr Mixed   
A:D:MeanPath:DegreeCorr Negative   
B:D:MeanPath:DegreeCorr Mixed   
C:D:MeanPath:DegreeCorr Mixed   

A:B:alpha:DegreeCorr Negative   
A:C:alpha:DegreeCorr Mixed   
B:C:alpha:DegreeCorr Mixed   
A:D:alpha:DegreeCorr Mixed   
B:D:alpha:DegreeCorr Mixed   
C:D:alpha:DegreeCorr Mixed   

A:MeanPath:alpha:DegreeCorr Positive yes 
B:MeanPath:alpha:DegreeCorr Mixed   
C:MeanPath:alpha:DegreeCorr Positive   
D:MeanPath:alpha:DegreeCorr Mixed   

A:B:C:D:MeanPath Mixed   
A:B:C:D:alpha Mixed   

A:B:C:MeanPath:alpha Positive   
A:B:D:MeanPath:alpha Negative   
A:C:D:MeanPath:alpha Mixed   
B:C:D:MeanPath:alpha Mixed   

A:B:C:D:DegreeCorr Negative   
A:B:C:MeanPath:DegreeCorr Mixed   
A:B:D:MeanPath:DegreeCorr Positive   
A:C:D:MeanPath:DegreeCorr Positive   
B:C:D:MeanPath:DegreeCorr Negative yes 

A:B:C:alpha:DegreeCorr Positive   
A:B:D:alpha:DegreeCorr Negative yes 
A:C:D:alpha:DegreeCorr Mixed yes 
B:C:D:alpha:DegreeCorr Mixed   

A:B:MeanPath:alpha:DegreeCorr Positive   
A:C:MeanPath:alpha:DegreeCorr Negative yes 
B:C:MeanPath:alpha:DegreeCorr Negative yes 
A:D:MeanPath:alpha:DegreeCorr Mixed yes 
B:D:MeanPath:alpha:DegreeCorr Mixed   
C:D:MeanPath:alpha:DegreeCorr Mixed yes 

A:B:C:D:MeanPath:alpha Positive   
A:B:C:D:MeanPath:DegreeCorr Positive yes 

A:B:C:D:alpha:DegreeCorr Mixed   
A:B:C:MeanPath:alpha:DegreeCorr Negative yes 
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Regressor Effect 
Significant 
 (05. = ࢻ)

A:B:D:MeanPath:alpha:DegreeCorr Mixed yes 
A:C:D:MeanPath:alpha:DegreeCorr Positive yes 
B:C:D:MeanPath:alpha:DegreeCorr Mixed   

A:B:C:D:MeanPath:alpha:DegreeCorr Positive yes 
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Appendix D Quantile Regression Coefficient Plots 

 
Figure D-1 Main Effects’ Coefficients 
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Figure D-2 Two Factor Interactions' Coefficients 
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Figure D-3 Two Factor Interactions' Coefficients (cont.) 
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Figure D-4 Two Factor Interactions' Coefficients (cont.) 
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Figure D-5 Three Factor Interactions' Coefficients 
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Figure D-6 Three Factor Interactions' Coefficients (cont.) 
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Figure D-7 Three Factor Interactions' Coefficients (cont.) 
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Figure D-8 Three Factor Interactions' Coefficients (cont.) 
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Figure D-9 Three Factor Interactions' Coefficients (cont.) 
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Figure D-10 Four Factor Interactions' Coefficients 



www.manaraa.com

 

D-11 

 

 
Figure D-11 Four Factor Interactions' Coefficients (cont.) 



www.manaraa.com

 

D-12 

 

 
Figure D-12 Four Factor Interactions' Coefficients (cont.) 
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Figure D-13 Four Factor Interactions' Coefficients (cont.) 
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Figure D-14 Four Factor Interactions' Coefficients (cont.) 
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Figure D-15 Five Factor Interactions' Coefficients 
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Figure D-16 Five Factor Interactions' Coefficients (cont.) 
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Figure D-17 Five Factor Interactions' Coefficients (cont.) 
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Figure D-18 Six and Seven Factor Interactions' Coefficients 
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Appendix E R Code 

SourceScoring.R inputs the source pairings dissimilarity matrix and the source 

weightings matrix and conducts the weighted MDS, fuzzy clustering, and AUC 

computations, outputting the results to a file. 

E.1 SourceScoring.R 

library(smacof) 
library(cluster) 
library(ROCR) 
 
# DIRECTORIES 
dirs <- c("1", "a", "b", "c", "d", "ab", "ac", "ad", "bc", "bd", 
"cd", "abc", "abd", "acd", "bcd", "abcd", "SF1", "SF2", "SF3", 
"SF4", "SF5", "SF6", "SF7", "SF8", "SF9", "SF10", "SF11", "SF12", 
"SF13", "SF14", "SF15", "SF16", "SF17", "centerpt") 
 
for(run in 1:length(dirs)) { 
 
# OUTER LOOP FOR NUMBER OF REPLICATES 
for(rep in 1:10) { 
 
# CREATE THE FILE NAME STRINGS FOR DATA INPUT 
CohenFile <- paste("I:\\My 
Documents\\NetBeansProjects\\Research\\",dirs[run],"\\","Cohen",rep,
".txt", sep = "") 
CohenWeightsFile <- paste("I:\\My 
Documents\\NetBeansProjects\\Research\\",dirs[run],"\\","Cohen","Wei
ghts",rep,".txt", sep= "") 
GiniFile <- paste("I:\\My 
Documents\\NetBeansProjects\\Research\\",dirs[run],"\\","Gini",rep,"
.txt", sep = "") 
GiniWeightsFile <- paste("I:\\My 
Documents\\NetBeansProjects\\Research\\",dirs[run],"\\","Gini","Weig
hts",rep,".txt", sep= "") 
DispersionFile <- paste("I:\\My 
Documents\\NetBeansProjects\\Research\\",dirs[run],"\\","Dispersion"
,rep,".txt", sep = "") 
DispersionWeightsFile <- paste("I:\\My 
Documents\\NetBeansProjects\\Research\\",dirs[run],"\\","Dispersion"
,"Weights",rep,".txt", sep= "") 
AnderbergFile <- paste("I:\\My 
Documents\\NetBeansProjects\\Research\\",dirs[run],"\\","Anderberg",
rep,".txt", sep = "") 



www.manaraa.com

 

E-2 

 

AnderbergWeightsFile <- paste("I:\\My 
Documents\\NetBeansProjects\\Research\\",dirs[run],"\\","Anderberg",
"Weights",rep,".txt", sep= "") 
HamannFile <- paste("I:\\My 
Documents\\NetBeansProjects\\Research\\",dirs[run],"\\","Hamann",rep
,".txt", sep = "") 
HamannWeightsFile <- paste("I:\\My 
Documents\\NetBeansProjects\\Research\\",dirs[run],"\\","Hamann","We
ights",rep,".txt", sep= "") 
GKMaxFile <- paste("I:\\My 
Documents\\NetBeansProjects\\Research\\",dirs[run],"\\","GKMax",rep,
".txt", sep = "") 
GKMaxWeightsFile <- paste("I:\\My 
Documents\\NetBeansProjects\\Research\\",dirs[run],"\\","GKMax","Wei
ghts",rep,".txt", sep= "") 
PeirceFile <- paste("I:\\My 
Documents\\NetBeansProjects\\Research\\",dirs[run],"\\","Pierce",rep
,".txt", sep = "") 
PeirceWeightsFile <- paste("I:\\My 
Documents\\NetBeansProjects\\Research\\",dirs[run],"\\","Pierce","We
ights",rep,".txt", sep= "") 
SSIIIFile <- paste("I:\\My 
Documents\\NetBeansProjects\\Research\\",dirs[run],"\\","SSIII",rep,
".txt", sep = "") 
SSIIIWeightsFile <- paste("I:\\My 
Documents\\NetBeansProjects\\Research\\",dirs[run],"\\","SSIII","Wei
ghts",rep,".txt", sep= "") 
 
# READ IN THE SOURCES' DISSIMILARITY MATRICES 
tryCatch({Error <- FALSE; Cohen<-read.table(CohenFile,header=T)}, 
error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { Cohen <- NA}}) 
tryCatch({Error <- FALSE; Cohenweights<-read.table(CohenWeightsFile, 
header=T)}, error = function(ex) { cat("An error was detected in 
run: ", dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, 
finally= {if(Error) { Cohenweights <- NA}}) 
tryCatch({Error <- FALSE; Gini<-read.table(GiniFile,header=T)}, 
error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { Gini <- NA}}) 
tryCatch({Error <- FALSE; Giniweights<-read.table(GiniWeightsFile, 
header=T)}, error = function(ex) { cat("An error was detected in 
run: ", dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, 
finally= {if(Error) { Giniweights <- NA}}) 
tryCatch({Error <- FALSE; Dispersion<-
read.table(DispersionFile,header=T)}, error = function(ex) { cat("An 
error was detected in run: ", dirs[run], ", rep ", rep,": "); 
print(ex); Error <- TRUE}, finally= {if(Error) { Dispersion <- NA}}) 
tryCatch({Error <- FALSE; Dispersionweights<-
read.table(DispersionWeightsFile, header=T)}, error = function(ex) { 
cat("An error was detected in run: ", dirs[run], ", rep ", rep,": 
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"); print(ex); Error <- TRUE}, finally= {if(Error) { 
Dispersionweights <- NA}}) 
tryCatch({Error <- FALSE; Anderberg<-
read.table(AnderbergFile,header=T)}, error = function(ex) { cat("An 
error was detected in run: ", dirs[run], ", rep ", rep,": "); 
print(ex); Error <- TRUE}, finally= {if(Error) { Anderberg <- NA}}) 
tryCatch({Error <- FALSE; Anderbergweights<-
read.table(AnderbergWeightsFile, header=T)}, error = function(ex) { 
cat("An error was detected in run: ", dirs[run], ", rep ", rep,": 
"); print(ex); Error <- TRUE}, finally= {if(Error) { 
Anderbergweights <- NA}}) 
tryCatch({Error <- FALSE; Hamann<-read.table(HamannFile,header=T)}, 
error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { Hamann <- NA}}) 
tryCatch({Error <- FALSE; Hamannweights<-
read.table(HamannWeightsFile, header=T)}, error = function(ex) { 
cat("An error was detected in run: ", dirs[run], ", rep ", rep,": 
"); print(ex); Error <- TRUE}, finally= {if(Error) { Hamannweights 
<- NA}}) 
tryCatch({Error <- FALSE; GKMax<-read.table(GKMaxFile,header=T)}, 
error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { GKMax <- NA}}) 
tryCatch({Error <- FALSE; GKMaxweights<-read.table(GKMaxWeightsFile, 
header=T)}, error = function(ex) { cat("An error was detected in 
run: ", dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, 
finally= {if(Error) { GKMaxweights <- NA}}) 
tryCatch({Error <- FALSE; Peirce<-read.table(PeirceFile,header=T)}, 
error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { Peirce <- NA}}) 
tryCatch({Error <- FALSE; Peirceweights<-
read.table(PeirceWeightsFile, header=T)}, error = function(ex) { 
cat("An error was detected in run: ", dirs[run], ", rep ", rep,": 
"); print(ex); Error <- TRUE}, finally= {if(Error) { Peirceweights 
<- NA}}) 
 
# PERFORM WEIGHTED MDS ON THE SOURCES' DISSIMILARITY MATRICES 
tryCatch({Error <- FALSE; CohenMDS <- smacofSym(Cohen, ndim = 2, 
Cohenweights, init = NULL, metric = TRUE, ties = "primary", verbose 
= FALSE, relax = FALSE, modulus = 1, itmax = 10000, eps = 1e-06)}, 
error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { CohenMDS <- NA}}) 
tryCatch({Error <- FALSE; GiniMDS <- smacofSym(Gini, ndim = 2, 
Giniweights, init = NULL, metric = TRUE, ties = "primary", verbose = 
FALSE, relax = FALSE, modulus = 1, itmax = 10000, eps = 1e-06)}, 
error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { GiniMDS <- NA}}) 
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tryCatch({Error <- FALSE; DispersionMDS <- smacofSym(Dispersion, 
ndim = 2, Dispersionweights, init = NULL, metric = TRUE, ties = 
"primary", verbose = FALSE, relax = FALSE, modulus = 1, itmax = 
10000, eps = 1e-06)}, error = function(ex) { cat("An error was 
detected in run: ", dirs[run], ", rep ", rep,": "); print(ex); Error 
<- TRUE}, finally= {if(Error) { DispersionMDS <- NA}}) 
tryCatch({Error <- FALSE; AnderbergMDS <- smacofSym(Anderberg, ndim 
= 2, Anderbergweights, init = NULL, metric = TRUE, ties = "primary", 
verbose = FALSE, relax = FALSE, modulus = 1, itmax = 10000, eps = 
1e-06)}, error = function(ex) { cat("An error was detected in run: 
", dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, 
finally= {if(Error) { AnderbergMDS <- NA}}) 
tryCatch({Error <- FALSE; HamannMDS <- smacofSym(Hamann, ndim = 2, 
Hamannweights, init = NULL, metric = TRUE, ties = "primary", verbose 
= FALSE, relax = FALSE, modulus = 1, itmax = 10000, eps = 1e-06)}, 
error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { HamannMDS <- NA}}) 
tryCatch({Error <- FALSE; GKMaxMDS <- smacofSym(GKMax, ndim = 2, 
GKMaxweights, init = NULL, metric = TRUE, ties = "primary", verbose 
= FALSE, relax = FALSE, modulus = 1, itmax = 10000, eps = 1e-06)}, 
error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { GKMaxMDS <- NA}}) 
tryCatch({Error <- FALSE; PeirceMDS <- smacofSym(Peirce, ndim = 2, 
Peirceweights, init = NULL, metric = TRUE, ties = "primary", verbose 
= FALSE, relax = FALSE, modulus = 1, itmax = 10000, eps = 1e-06)}, 
error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { PeirceMDS <- NA}}) 
 
# PERFORM FUZZY CLUSTERING OF THE SOURCES' MDS DISTANCES 
tryCatch({Error <- FALSE; Cohenfanny <- fanny(CohenMDS$confdiss, 
2)}, error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { Cohenfanny <- NA}}) 
tryCatch({Error <- FALSE; Ginifanny <- fanny(GiniMDS$confdiss, 2)}, 
error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { Ginifanny <- NA}}) 
tryCatch({Error <- FALSE; Dispersionfanny <- 
fanny(DispersionMDS$confdiss, 2)}, error = function(ex) { cat("An 
error was detected in run: ", dirs[run], ", rep ", rep,": "); 
print(ex); Error <- TRUE}, finally= {if(Error) { Dispersionfanny <- 
NA}}) 
tryCatch({Error <- FALSE; Anderbergfanny <- 
fanny(AnderbergMDS$confdiss, 2)}, error = function(ex) { cat("An 
error was detected in run: ", dirs[run], ", rep ", rep,": "); 
print(ex); Error <- TRUE}, finally= {if(Error) { Anderbergfanny <- 
NA}}) 
tryCatch({Error <- FALSE; Hamannfanny <- fanny(HamannMDS$confdiss, 
2)}, error = function(ex) { cat("An error was detected in run: ", 
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dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { Hamannfanny <- NA}}) 
tryCatch({Error <- FALSE; GKMaxfanny <- fanny(GKMaxMDS$confdiss, 
2)}, error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { GKMaxfanny <- NA}}) 
tryCatch({Error <- FALSE; Peircefanny <- fanny(PeirceMDS$confdiss, 
2)}, error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { Peircefanny <- NA}}) 
 
# DETERMINE THE REAL STATUS OF EACH SOURCE (RELIABLE OR UNRELIABLE) 
solution <- substr(names(Cohen),1,1) 
if(length(solution)>0) { 
for(i in 1:length(solution)) if (solution[i] == "R") solution[i] = 1 
else solution[i] = 0 
Cohensolution <- as.numeric(solution) 
} else {Cohensolution <- NA} 
solution <- substr(names(Gini),1,1) 
if(length(solution)>0) { 
for(i in 1:length(solution)) if (solution[i] == "R") solution[i] = 1 
else solution[i] = 0 
Ginisolution <- as.numeric(solution) 
} else {Ginisolution <- NA} 
solution <- substr(names(Dispersion),1,1) 
if(length(solution)>0) { 
for(i in 1:length(solution)) if (solution[i] == "R") solution[i] = 1 
else solution[i] = 0 
Dispersionsolution <- as.numeric(solution) 
} else {Dispersionsolution <- NA} 
solution <- substr(names(Anderberg),1,1) 
if(length(solution)>0) { 
for(i in 1:length(solution)) if (solution[i] == "R") solution[i] = 1 
else solution[i] = 0 
Anderbergsolution <- as.numeric(solution) 
} else {Anderbergsolution <- NA} 
solution <- substr(names(Hamann),1,1) 
if(length(solution)>0) { 
for(i in 1:length(solution)) if (solution[i] == "R") solution[i] = 1 
else solution[i] = 0 
Hamannsolution <- as.numeric(solution) 
} else {Hamannsolution <- NA} 
solution <- substr(names(GKMax),1,1) 
if(length(solution)>0) { 
for(i in 1:length(solution)) if (solution[i] == "R") solution[i] = 1 
else solution[i] = 0 
GKMaxsolution <- as.numeric(solution) 
} else {GKMaxsolution <- NA} 
solution <- substr(names(Peirce),1,1) 
if(length(solution)>0) { 
for(i in 1:length(solution)) if (solution[i] == "R") solution[i] = 1 
else solution[i] = 0 
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Peircesolution <- as.numeric(solution) 
} else {Peircesolution <- NA} 
 
# COMPUTE THE ROC CURVE FOR EACH DISSIMILARITY STATISTIC 
tryCatch({Error <- FALSE; CohenPred <- 
prediction(Cohenfanny$membership[,1], Cohensolution)}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {if(Error) { 
CohenPred <- NA}}) 
tryCatch({Error <- FALSE; CohenPerf <- performance(CohenPred, 
measure = "tpr", x.measure = "fpr")}, error = function(ex) { cat("An 
error was detected in run: ", dirs[run], ", rep ", rep,": "); 
print(ex); Error <- TRUE}, finally= {if(Error) { CohenPerf <- NA}})  
tryCatch({Error <- FALSE; GiniPred <- 
prediction(Ginifanny$membership[,1], Ginisolution)}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {if(Error) { 
GiniPred <- NA}}) 
tryCatch({Error <- FALSE; GiniPerf <- performance(GiniPred, measure 
= "tpr", x.measure = "fpr")}, error = function(ex) { cat("An error 
was detected in run: ", dirs[run], ", rep ", rep,": "); print(ex); 
Error <- TRUE}, finally= {if(Error) { GiniPerf <- NA}})  
tryCatch({Error <- FALSE; DispersionPred <- 
prediction(Dispersionfanny$membership[,1], Dispersionsolution)}, 
error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { DispersionPred <- NA}}) 
tryCatch({Error <- FALSE; DispersionPerf <- 
performance(DispersionPred, measure = "tpr", x.measure = "fpr")}, 
error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { DispersionPerf <- NA}})  
tryCatch({Error <- FALSE; AnderbergPred <- 
prediction(Anderbergfanny$membership[,1], Anderbergsolution)}, error 
= function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {if(Error) { 
AnderbergPred <- NA}}) 
tryCatch({Error <- FALSE; AnderbergPerf <- 
performance(AnderbergPred, measure = "tpr", x.measure = "fpr")}, 
error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { AnderbergPerf <- NA}})  
tryCatch({Error <- FALSE; HamannPred <- 
prediction(Hamannfanny$membership[,1], Hamannsolution)}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {if(Error) { 
HamannPred <- NA}}) 
tryCatch({Error <- FALSE; HamannPerf <- performance(HamannPred, 
measure = "tpr", x.measure = "fpr")}, error = function(ex) { cat("An 
error was detected in run: ", dirs[run], ", rep ", rep,": "); 
print(ex); Error <- TRUE}, finally= {if(Error) { HamannPerf <- NA}})  
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tryCatch({Error <- FALSE; GKMaxPred <- 
prediction(GKMaxfanny$membership[,1], GKMaxsolution)}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {if(Error) { 
GKMaxPred <- NA}}) 
tryCatch({Error <- FALSE; GKMaxPerf <- performance(GKMaxPred, 
measure = "tpr", x.measure = "fpr")}, error = function(ex) { cat("An 
error was detected in run: ", dirs[run], ", rep ", rep,": "); 
print(ex); Error <- TRUE}, finally= {if(Error) { GKMaxPerf <- NA}})  
tryCatch({Error <- FALSE; PeircePred <- 
prediction(Peircefanny$membership[,1], Peircesolution)}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {if(Error) { 
PeircePred <- NA}}) 
tryCatch({Error <- FALSE; PeircePerf <- performance(PeircePred, 
measure = "tpr", x.measure = "fpr")}, error = function(ex) { cat("An 
error was detected in run: ", dirs[run], ", rep ", rep,": "); 
print(ex); Error <- TRUE}, finally= {if(Error) { PeircePerf <- NA}})  
 
# COMPUTE THE AUC FOR EACH DISSIMILARITY STATISTIC 
tryCatch({Error <- FALSE; CohenAUC <- performance(CohenPred, 
'auc')}, error = function(ex) { cat("An error was detected in run: 
", dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, 
finally= {if(Error) { CohenAUC <- NA}}) 
tryCatch({Error <- FALSE; GiniAUC <- performance(GiniPred, 'auc')}, 
error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{if(Error) { GiniAUC <- NA}}) 
tryCatch({Error <- FALSE; DispersionAUC <- 
performance(DispersionPred, 'auc')}, error = function(ex) { cat("An 
error was detected in run: ", dirs[run], ", rep ", rep,": "); 
print(ex); Error <- TRUE}, finally= {if(Error) { DispersionAUC <- 
NA}}) 
tryCatch({Error <- FALSE; AnderbergAUC <- performance(AnderbergPred, 
'auc')}, error = function(ex) { cat("An error was detected in run: 
", dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, 
finally= {if(Error) { AnderbergAUC <- NA}}) 
tryCatch({Error <- FALSE; HamannAUC <- performance(HamannPred, 
'auc')}, error = function(ex) { cat("An error was detected in run: 
", dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, 
finally= {if(Error) { HamannAUC <- NA}}) 
tryCatch({Error <- FALSE; GKMaxAUC <- performance(GKMaxPred, 
'auc')}, error = function(ex) { cat("An error was detected in run: 
", dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, 
finally= {if(Error) { GKMaxAUC <- NA}}) 
tryCatch({Error <- FALSE; PeirceAUC <- performance(PeircePred, 
'auc')}, error = function(ex) { cat("An error was detected in run: 
", dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, 
finally= {if(Error) { PeirceAUC <- NA}}) 
 
# TEST TO SEE WHICH NUMBERS ARE AVAILABLE FOR OUTPUTTING 
output <- dirs[run] 
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output <- t(c(output, rep)) 
 
# MDS STRESS 
tryCatch({Error <- FALSE; num <- CohenMDS$stress.m}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- CohenMDS$stress.m)}) 
output <- c(output, num) 
tryCatch({Error <- FALSE; num <- GiniMDS$stress.m}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- GiniMDS$stress.m)}) 
output <- c(output, num) 
tryCatch({Error <- FALSE; num <- DispersionMDS$stress.m}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- DispersionMDS$stress.m)}) 
output <- c(output, num) 
tryCatch({Error <- FALSE; num <- AnderbergMDS$stress.m}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- AnderbergMDS$stress.m)}) 
output <- c(output, num) 
tryCatch({Error <- FALSE; num <- HamannMDS$stress.m}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- HamannMDS$stress.m)}) 
output <- c(output, num) 
tryCatch({Error <- FALSE; num <- GKMaxMDS$stress.m}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- GKMaxMDS$stress.m)}) 
output <- c(output, num) 
tryCatch({Error <- FALSE; num <- PeirceMDS$stress.m}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- PeirceMDS$stress.m)}) 
output <- c(output, num) 
 
# DUNN'S COEFFICIENT FOR FUZZY CLUSTERING 
tryCatch({Error <- FALSE; num <- Cohenfanny$coeff[2]}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- Cohenfanny$coeff[2])}) 
output <- c(output, num) 
tryCatch({Error <- FALSE; num <- Ginifanny$coeff[2]}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- Ginifanny$coeff[2])}) 
output <- c(output, num) 
tryCatch({Error <- FALSE; num <- Dispersionfanny$coeff[2]}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
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rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- Dispersionfanny$coeff[2])}) 
output <- c(output, num) 
tryCatch({Error <- FALSE; num <- Anderbergfanny$coeff[2]}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- Anderbergfanny$coeff[2])}) 
output <- c(output, num) 
tryCatch({Error <- FALSE; num <- Hamannfanny$coeff[2]}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- Hamannfanny$coeff[2])}) 
output <- c(output, num) 
tryCatch({Error <- FALSE; num <- GKMaxfanny$coeff[2]}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- GKMaxfanny$coeff[2])}) 
output <- c(output, num) 
tryCatch({Error <- FALSE; num <- Peircefanny$coeff[2]}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- Peircefanny$coeff[2])}) 
output <- c(output, num) 
 
# AUC VALUES 
tryCatch({Error <- FALSE; num <- unlist(CohenAUC@y.values)}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- unlist(CohenAUC@y.values))}) 
output <- c(output, max(num, 1 - num)) 
tryCatch({Error <- FALSE; num <- unlist(GiniAUC@y.values)}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- unlist(GiniAUC@y.values))}) 
output <- c(output, max(num, 1 - num)) 
tryCatch({Error <- FALSE; num <- unlist(DispersionAUC@y.values)}, 
error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{ifelse(Error, num <- NA, num <- unlist(DispersionAUC@y.values))}) 
output <- c(output, max(num, 1 - num)) 
tryCatch({Error <- FALSE; num <- unlist(AnderbergAUC@y.values)}, 
error = function(ex) { cat("An error was detected in run: ", 
dirs[run], ", rep ", rep,": "); print(ex); Error <- TRUE}, finally= 
{ifelse(Error, num <- NA, num <- unlist(AnderbergAUC@y.values))}) 
output <- c(output, max(num, 1 - num)) 
tryCatch({Error <- FALSE; num <- unlist(HamannAUC@y.values)}, error 
= function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- unlist(HamannAUC@y.values))}) 
output <- c(output, max(num, 1 - num)) 
tryCatch({Error <- FALSE; num <- unlist(GKMaxAUC@y.values)}, error = 
function(ex) { cat("An error was detected in run: ", dirs[run], ", 
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rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- unlist(GKMaxAUC@y.values))}) 
output <- c(output, max(num, 1 - num)) 
tryCatch({Error <- FALSE; num <- unlist(PeirceAUC@y.values)}, error 
= function(ex) { cat("An error was detected in run: ", dirs[run], ", 
rep ", rep,": "); print(ex); Error <- TRUE}, finally= {ifelse(Error, 
num <- NA, num <- unlist(PeirceAUC@y.values))}) 
output <- c(output, max(num, 1 - num)) 
 
# FIRST TIME - CREATE RESULTS, AFTER THAT - ADD TO RESULTS 
ifelse(run == 1 & rep == 1, results <- t(output), results <- 
rbind(results, t(output))) 
} 
} 
 
# OUTPUT THE DATA TO A FILE 
colnames(results) <- c("Run", "Rep", "CohenStress", "GiniStress", 
"DispersionStress", "AnderbergStress", "HamannStress", 
"GKMaxStress", "PeirceStress", "CohenDunn", "GiniDunn", 
"DispersionDunn", "AnderbergDunn", "HamannDunn", "GKMaxDunn", 
"PeirceDunn", "CohenAUC", "GiniAUC", "DispersionAUC", 
"AnderbergAUC", "HamannAUC", "GKMaxAUC", "PeirceAUC") 
# rownames(results) <- 1:rep 
write.table(results, file = "I:\\My 
Documents\\NetBeansProjects\\Research\\AUCresults.txt", sep = "\t", 
row.names = FALSE, quote = FALSE) 
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Appendix F Java Code for Social Network Source Generation 

GenerateReliable.java and GenerateUnreliable.java compose the main java code 

components used to generate reliable and unreliable social network information sources 

from input graphs as described in Section 3.2.2.  Both files utilize the JUNG java library 

(O'Madadhain, Fisher, Nelson, White, & Boey, 2010) and additional java files to execute. 

F.1 GenerateReliable.java 

package morris.james.sna.sources; 
 
import morris.james.sna.io.userinterface.ConsoleInput; 
 
import morris.james.sna.io.MODFile; 
import morris.james.sna.io.MODFileWriter; 
import morris.james.sna.sampling.UAR; 
 
import edu.uci.ics.jung.graph.Graph; 
import edu.uci.ics.jung.algorithms.filters.EdgePredicateFilter; 
import edu.uci.ics.jung.algorithms.filters.VertexPredicateFilter; 
import edu.uci.ics.jung.algorithms.filters.KNeighborhoodFilter; 
import edu.uci.ics.jung.graph.util.EdgeType; 
 
import java.util.HashSet; 
 
/** 
 * Generates a user specified number of reliable sources drawing 
from a given 
 * input graph. 
 * 
 * @author James Morris 
 * December 14, 2011 
 */ 
public class GenerateReliable { 
 
    public static String filenameprefix = "R"; 
    public static String inputfileprefix = "output"; 
    public static String directory = ""; 
 
    public static void main(String[] arguments) { 
        int numsources = 0; 
 
        System.out.println(); 
        System.out.print("Please enter the number of reliable 
sources to be generated: "); 
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        String convert = ConsoleInput.readline(); 
        try { 
            numsources = Integer.parseInt(convert.substring(0, 
convert.length() - 1)); 
        } catch (NumberFormatException nan) { 
            return; 
        } catch (NullPointerException npe) { 
            return; 
        } 
 
        int numReps = 0; 
        System.out.println(); 
        System.out.print("Please enter the number of repetitions: 
"); 
        String RepConvert = ConsoleInput.readline(); 
        try { 
            numReps = Integer.parseInt(RepConvert.substring(0, 
RepConvert.length() - 1)); 
        } catch (NumberFormatException nan) { 
            return; 
        } catch (NullPointerException npe) { 
            return; 
        } 
 
        generateReliable(numsources, .10f, numReps); 
    } 
 
    /** 
     * Generates a user specified number of reliable sources drawing 
UAR  
     * from a given input graph. 
     * 
     */ 
    public static void generateReliable(int numsources, float 
samplePct, int numReps) { 
 
        Graph inputgraph; 
        boolean directed = false; 
 
        if (!directory.isEmpty()) { 
            directory += "/"; 
        } 
 
        for (int Reps = 1; Reps <= numReps; Reps++) { 
 
            try { 
                MODFile input = new MODFile(directory + 
inputfileprefix + Reps + ".txt"); 
                inputgraph = input.load(); 
                System.out.println("Input Graph Nodes: " + 
inputgraph.getVertexCount() + " Edges: " + 
inputgraph.getEdgeCount()); 
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                if 
(inputgraph.getDefaultEdgeType().equals(EdgeType.DIRECTED)) { 
                    directed = true; 
                } 
 
                for (int n = 1; n <= numsources; n++) { 
 
//            System.out.println("Generating Reliable Source #" + 
Integer.toString(n)); 
                    String outputfile = directory + filenameprefix + 
Integer.toString(n + (Reps - 1) * numsources) + ".txt"; 
 
                    // create source by selecting edges UAR 
                    EdgePredicateFilter edges = new 
EdgePredicateFilter(new UAR(samplePct)); 
                    Graph outputgraph = edges.transform(inputgraph); 
 
                    System.out.println("Repetition #" + Reps + ": 
Reliable Source #" + n + " contains " + outputgraph.getVertexCount() 
+ " nodes and " + outputgraph.getEdgeCount() + " edges."); 
 
                    for (Object v : inputgraph.getVertices()) { 
                        if (!outputgraph.containsVertex(v)) { 
                            outputgraph.addVertex(v); 
                        } 
                    } 
 
                    // Check to see if output graph is empty, if so, 
redo iteration 
                    if (outputgraph.getEdgeCount() > 0) { 
                        try { 
                            MODFileWriter output = new 
MODFileWriter(); 
                            output.save(outputgraph, outputfile); 
                        } catch (RuntimeException ioe) { 
                            System.out.println("OUTPUT ERROR: " + 
ioe.getMessage()); 
                        } 
                    } else { 
                        n--; 
                    } 
                } 
            } catch (RuntimeException ioe) { 
                System.out.println("INPUT ERROR: " + 
ioe.getMessage()); 
            } 
        } 
    } 
 
    /** 
     * Generates a user specified number of reliable sources drawing 
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     * from a given input graph by selecting nodes UAR and randomly 
sampling 
     * their specified neighborhood. 
     * 
     */ 
    public static void generateReliable(int numsources, int 
neighborhood, float seedPct, float samplePct, int numReps) { 
 
        Graph inputgraph; 
        boolean directed = false; 
 
        if (!directory.isEmpty()) { 
            directory += "/"; 
        } 
 
        for (int Reps = 1; Reps <= numReps; Reps++) { 
 
            try { 
                MODFile input = new MODFile(directory + 
inputfileprefix + Reps + ".txt"); 
                inputgraph = input.load(); 
                System.out.println("Input Graph: Nodes: " + 
inputgraph.getVertexCount() + " Edges: " + 
inputgraph.getEdgeCount()); 
 
                if 
(inputgraph.getDefaultEdgeType().equals(EdgeType.DIRECTED)) { 
                    directed = true; 
                } 
 
                for (int n = 1; n <= numsources; n++) { 
 
//            System.out.println("Generating Reliable Source #" + 
Integer.toString(n)); 
                    String outputfile = directory + filenameprefix + 
Integer.toString(n + (Reps - 1) * numsources) + ".txt"; 
 
                    // k-neighborhood for a collection of random 
seeds from the input graph 
                    VertexPredicateFilter nodes = new 
VertexPredicateFilter(new UAR(seedPct)); 
                    HashSet rootnodes = new 
HashSet(nodes.transform(inputgraph).getVertices()); 
//            System.out.println("Root Nodes: " + rootnodes.size()); 
                    KNeighborhoodFilter subgraph = new 
KNeighborhoodFilter(rootnodes, neighborhood, 
KNeighborhoodFilter.EdgeType.IN_OUT); 
 
                    Graph outputgraph = 
subgraph.transform(inputgraph); 
 
//                     sample neighborhood by selecting edges UAR 
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                    if (samplePct < 1) { 
                        EdgePredicateFilter edges = new 
EdgePredicateFilter(new UAR(samplePct)); 
                        outputgraph = edges.transform(outputgraph); 
                    } 
 
                    System.out.println("Repetition #" + Reps + ": 
Reliable Source #" + n + " contains " + outputgraph.getVertexCount() 
+ " nodes and " + outputgraph.getEdgeCount() + " edges."); 
 
                    for (Object v : inputgraph.getVertices()) { 
                        if (!outputgraph.containsVertex(v)) { 
                            outputgraph.addVertex(v); 
                        } 
                    } 
 
                    // Check to see if output graph is empty, if so, 
redo iteration 
                    if (outputgraph.getEdgeCount() > 0) { 
                        try { 
                            MODFileWriter output = new 
MODFileWriter(); 
                            output.save(outputgraph, outputfile); 
                        } catch (RuntimeException ioe) { 
                            System.out.println("OUTPUT ERROR: " + 
ioe.getMessage()); 
                        } 
                    } else { 
                        n--; 
                    } 
                } 
 
            } catch (RuntimeException ioe) { 
                System.out.println("INPUT ERROR: " + 
ioe.getMessage()); 
            } 
        } 
    } 
} 
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F.2 GenerateUnrelaible.java 

package morris.james.sna.sources; 
 
import morris.james.sna.io.userinterface.ConsoleInput; 
import morris.james.sna.io.MODFile; 
import morris.james.sna.io.MODFileWriter; 
import morris.james.sna.sampling.UAR; 
 
import edu.uci.ics.jung.graph.Graph; 
import edu.uci.ics.jung.algorithms.filters.EdgePredicateFilter; 
import edu.uci.ics.jung.algorithms.filters.KNeighborhoodFilter; 
import edu.uci.ics.jung.algorithms.filters.VertexPredicateFilter; 
import edu.uci.ics.jung.graph.util.EdgeType; 
 
import java.util.HashSet; 
 
/** 
 * Generates a user specified number of unreliable sources drawing 
from a set 
 * of given input graphs. 
 * 
 * @author James Morris 
 * December 14, 2011 
 */ 
public class GenerateUnreliable { 
 
    public static String outputfilenameprefix = "U"; 
    public static String inputfilenameprefix = "output"; 
    public static String directory = ""; 
 
    public static void main(String[] arguments) { 
        int numsources = 0; 
 
        System.out.println(); 
        System.out.print("Please enter the number of unreliable 
sources to be generated: "); 
        String convert = ConsoleInput.readline(); 
        try { 
            numsources = Integer.parseInt(convert.substring(0, 
convert.length() - 1)); 
        } catch (NumberFormatException nan) { 
            return; 
        } catch (NullPointerException npe) { 
            return; 
        } 
 
//        generateUnreliable(numsources, 1, .05f, .10f, 1); 
 
    } 
 
    /** 
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     * Generates a user specified number of unreliable sources 
drawing from a set 
     * of given input graphs. 
     * inputstart indicates number of input graphs to start creating 
unreliable 
     * sources, generally input start is the number of repetitions 
of generating 
     * reliable sources. 
     *  
     */ 
//    public static void generateUnreliable(int numsources, int 
neighborhood, float seedPct, float samplePct, int inputstart) { 
    public static void generateUnreliable(int numsources, float 
samplePct, int inputstart) { 
 
        Graph inputgraph = null; 
 
        if (!directory.isEmpty()) { 
            directory += "/"; 
        } 
 
        for (int n = 1; n <= numsources; n++) { 
            try { 
                System.out.println("Loading Unreliable Source Input 
Graph #" + Integer.toString(n)); 
                String inputfile = directory + inputfilenameprefix + 
Integer.toString(n + inputstart) + ".txt"; 
                MODFile input = new MODFile(inputfile); 
                inputgraph = input.load(); 
                System.out.println("Input Graph: Nodes: " + 
inputgraph.getVertexCount() + " Edges: " + 
inputgraph.getEdgeCount()); 
 
                boolean directed = false; 
                if 
(inputgraph.getDefaultEdgeType().equals(EdgeType.DIRECTED)) { 
                    directed = true; 
                } 
            } catch (RuntimeException ioe) { 
                System.out.println("INPUT ERROR: " + 
ioe.getMessage()); 
            } 
 
            System.out.println("Generating Unreliable Source #" + 
Integer.toString(n)); 
            String outputfile = directory + outputfilenameprefix + 
Integer.toString(n) + ".txt"; 
 
            EdgePredicateFilter subgraph = new 
EdgePredicateFilter(new UAR(samplePct)); 
 
            Graph outputgraph = subgraph.transform(inputgraph); 
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//                    System.out.println("Repetition #" + Reps + ": 
Unreliable Source #" + n + " contains " + 
outputgraph.getVertexCount() + " nodes and " + 
outputgraph.getEdgeCount() + " edges."); 
            System.out.println("Unreliable Source #" + n + " 
contains " + outputgraph.getVertexCount() + " nodes and " + 
outputgraph.getEdgeCount() + " edges."); 
 
            for (Object v : inputgraph.getVertices()) { 
                if (!outputgraph.containsVertex(v)) { 
                    outputgraph.addVertex(v); 
                } 
            } 
 
            // Check to see if output graph is empty, if so, redo 
iteration 
            if (outputgraph.getEdgeCount() > 0) { 
                try { 
                    MODFileWriter output = new MODFileWriter(); 
                    output.save(outputgraph, outputfile); 
                } catch (RuntimeException ioe) { 
                    System.out.println("OUTPUT ERROR: " + 
ioe.getMessage()); 
                } 
            } else { 
                n--; 
            } 
        } 
    } 
 
    public static void generateUnreliable(int numsources, int 
neighborhood, float seedPct, float samplePct, int inputstart) { 
 
        Graph inputgraph = null; 
 
        if (!directory.isEmpty()) { 
            directory += "/"; 
        } 
 
        for (int n = 1; n <= numsources; n++) { 
            try { 
                System.out.println("Loading Unreliable Source Input 
Graph #" + Integer.toString(n)); 
                String inputfile = directory + inputfilenameprefix + 
Integer.toString(n + inputstart) + ".txt"; 
                MODFile input = new MODFile(inputfile); 
                inputgraph = input.load(); 
                System.out.println("Input Graph: Nodes: " + 
inputgraph.getVertexCount() + " Edges: " + 
inputgraph.getEdgeCount()); 
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                boolean directed = false; 
                if 
(inputgraph.getDefaultEdgeType().equals(EdgeType.DIRECTED)) { 
                    directed = true; 
                } 
            } catch (RuntimeException ioe) { 
                System.out.println("INPUT ERROR: " + 
ioe.getMessage()); 
            } 
 
            System.out.println("Generating Unreliable Source #" + 
Integer.toString(n)); 
            String outputfile = directory + outputfilenameprefix + 
Integer.toString(n) + ".txt"; 
 
            // k-neighborhood for a collection of random seeds from 
the input graph 
            VertexPredicateFilter nodes = new 
VertexPredicateFilter(new UAR(seedPct)); 
            HashSet rootnodes = new 
HashSet(nodes.transform(inputgraph).getVertices()); 
//            System.out.println("Root Nodes: " + rootnodes.size()); 
            KNeighborhoodFilter subgraph = new 
KNeighborhoodFilter(rootnodes, neighborhood, 
KNeighborhoodFilter.EdgeType.IN_OUT); 
 
            Graph outputgraph = subgraph.transform(inputgraph); 
 
//                     sample neighborhood by selecting edges UAR 
            if (samplePct < 1) { 
                EdgePredicateFilter edges = new 
EdgePredicateFilter(new UAR(samplePct)); 
                outputgraph = edges.transform(outputgraph); 
            } 
 
//                    System.out.println("Repetition #" + Reps + ": 
Unreliable Source #" + n + " contains " + 
outputgraph.getVertexCount() + " nodes and " + 
outputgraph.getEdgeCount() + " edges."); 
            System.out.println("Unreliable Source #" + n + " 
contains " + outputgraph.getVertexCount() + " nodes and " + 
outputgraph.getEdgeCount() + " edges."); 
 
            for (Object v : inputgraph.getVertices()) { 
                if (!outputgraph.containsVertex(v)) { 
                    outputgraph.addVertex(v); 
                } 
            } 
 
            // Check to see if output graph is empty, if so, redo 
iteration 
            if (outputgraph.getEdgeCount() > 0) { 
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                try { 
                    MODFileWriter output = new MODFileWriter(); 
                    output.save(outputgraph, outputfile); 
                } catch (RuntimeException ioe) { 
                    System.out.println("OUTPUT ERROR: " + 
ioe.getMessage()); 
                } 
            } else { 
                n--; 
            } 
        } 
    } 
} 
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Appendix G Java Code for Source Pairwise Comparisons 

SevenMeasureBatchComparison.java is the main java file to conduct batch 

processing of the information sources’ pairwise comparisons to compute the source 

dissimilarity and weightings matrices for the seven selected binary similarity measures 

used in Chapter V.  SourceCompare.java conducts the pairwise source comparison.  Both 

files utilize the JUNG java library (O'Madadhain, Fisher, Nelson, White, & Boey, 2010) 

and additional java files to execute. 

G.1 SevenMeasureBatchComparison.java 

package morris.james.sna.experiments.sourcecomparison; 
 
import morris.james.sna.sources.*; 
import morris.james.sna.io.userinterface.ConsoleInput; 
import morris.james.sna.io.MODFile; 
import morris.james.sna.morphisms.GraphMorphisms; 
import morris.james.sna.morphisms.MatrixManipulation; 
 
import edu.uci.ics.jung.graph.Graph; 
 
import java.io.BufferedWriter; 
import java.io.FileWriter; 
 
import morris.james.statistics.nonparametric.BinarySimilarity; 
 
/** 
 * Batch loads source reporting files, trims isolate nodes and 
conducts all 
 * pairwise source comparisons using seven binary comparison 
measures. 
 * 
 * @author James Morris 
 * 3 January 2012 
 */ 
public class SevenMeasureBatchComparison { 
 
    public static String RSprefix = "R"; 
    public static String USprefix = "U"; 
    public static String unassessedSourcesFile = 
"UnassessedSources.txt"; 
    public static String directory = ""; 
// Selected comparison measures output files 
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    public static String WeightsPrefix = "Weights"; 
    static String CohenOutputfilePrefix = "Cohen"; 
    static String GiniOutputfilePrefix = "Gini"; 
    static String DispersionOutputfilePrefix = "Dispersion"; 
    static String AnderbergOutputfilePrefix = "Anderberg"; 
    static String HamannOutputfilePrefix = "Hamann"; 
    static String GKMaxOutputfilePrefix = "GKMax"; 
    static String PierceOutputfilePrefix = "Pierce"; 
 
    public static void main(String[] arguments) { 
 
        int numReliable = 0; 
        System.out.println(); 
        System.out.print("Please enter the number of RELIABLE 
sources to be compared: "); 
        String RSconvert = ConsoleInput.readline(); 
        try { 
            numReliable = Integer.parseInt(RSconvert.substring(0, 
RSconvert.length() - 1)); 
        } catch (NumberFormatException nan) { 
            return; 
        } catch (NullPointerException npe) { 
            return; 
        } 
 
        int numUnreliable = 0; 
        System.out.println(); 
        System.out.print("Please enter the number of UNRELIABLE 
sources to be compared: "); 
        String USconvert = ConsoleInput.readline(); 
        try { 
            numUnreliable = Integer.parseInt(USconvert.substring(0, 
USconvert.length() - 1)); 
        } catch (NumberFormatException nan) { 
            return; 
        } catch (NullPointerException npe) { 
            return; 
        } 
 
        int numReps = 0; 
        System.out.println(); 
        System.out.print("Please enter the number of repetitions: 
"); 
        String RepConvert = ConsoleInput.readline(); 
        try { 
            numReps = Integer.parseInt(RepConvert.substring(0, 
RepConvert.length() - 1)); 
        } catch (NumberFormatException nan) { 
            return; 
        } catch (NullPointerException npe) { 
            return; 
        } 
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    } 
 
    /** 
     * Batch loads source reporting files, trims isolate nodes and 
conducts all 
     * pairwise source comparisons. 
     * 
     * @author James Morris 
     * 3 January 2012 
     */ 
    public static void BatchCompare(int numReps, int numReliable, 
int numUnreliable) { 
 
        Graph inputgraph1, inputgraph2; 
 
        if (!directory.isEmpty()) { 
            directory += "/"; 
        } 
 
        for (int Rep = 1; Rep <= numReps; Rep++) { 
 
            // Comparison Results Storage  (STORED AS 
DISSIMILARITIES) 
// Cohen's Kappa 
            float[][] CohenKappa = new float[numReliable + 
numUnreliable][numReliable + numUnreliable]; 
            float[][] CohenWeights = new float[numReliable + 
numUnreliable][numReliable + numUnreliable]; 
// Gini 
            float[][] Gini = new float[numReliable + 
numUnreliable][numReliable + numUnreliable]; 
            float[][] GiniWeights = new float[numReliable + 
numUnreliable][numReliable + numUnreliable]; 
// Dispersion 
            float[][] Dispersion = new float[numReliable + 
numUnreliable][numReliable + numUnreliable]; 
            float[][] DispersionWeights = new float[numReliable + 
numUnreliable][numReliable + numUnreliable]; 
// AnderbergD 
            float[][] Anderberg = new float[numReliable + 
numUnreliable][numReliable + numUnreliable]; 
            float[][] AnderbergWeights = new float[numReliable + 
numUnreliable][numReliable + numUnreliable]; 
// Hamann 
            float[][] Hamann = new float[numReliable + 
numUnreliable][numReliable + numUnreliable]; 
            float[][] HamannWeights = new float[numReliable + 
numUnreliable][numReliable + numUnreliable]; 
// Goodman& Kruskal's Maximum Formula 
            float[][] GKMax = new float[numReliable + 
numUnreliable][numReliable + numUnreliable]; 
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            float[][] GKMaxWeights = new float[numReliable + 
numUnreliable][numReliable + numUnreliable]; 
// Peirce 
            float[][] Pierce = new float[numReliable + 
numUnreliable][numReliable + numUnreliable]; 
            float[][] PierceWeights = new float[numReliable + 
numUnreliable][numReliable + numUnreliable]; 
 
            String inputfile1 = new String(); 
            String inputfile2 = new String(); 
 
            for (int i = 1; i < (numReliable + numUnreliable); i++) 
{ 
 
                if (i <= numReliable) { 
                    inputfile1 = directory + RSprefix + 
Integer.toString(i + (Rep - 1) * numReliable) + ".txt"; 
                } else { 
                    inputfile1 = directory + USprefix + 
Integer.toString(i - numReliable + (Rep - 1) * numUnreliable) + 
".txt"; 
                } 
                try { 
                    MODFile input1 = new MODFile(inputfile1); 
                    inputgraph1 = input1.load(); 
 
                    // Remove Isolates from graphs 
                    Graph graph1 = 
GraphMorphisms.removeIsolates(inputgraph1); 
 
                    for (int j = i + 1; j <= (numReliable + 
numUnreliable); j++) { 
 
                        if (j <= numReliable) { 
                            inputfile2 = directory + RSprefix + 
Integer.toString(j + (Rep - 1) * numReliable) + ".txt"; 
                        } else { 
                            inputfile2 = directory + USprefix + 
Integer.toString(j - numReliable + (Rep - 1) * numUnreliable) + 
".txt"; 
                        } 
 
                        try { 
                            MODFile input2 = new 
MODFile(inputfile2); 
                            inputgraph2 = input2.load(); 
//                            System.out.println("\nComparing " + 
inputfile1 + " and " + inputfile2); 
 
                            // Remove Isolates from graphs 
                            Graph graph2 = 
GraphMorphisms.removeIsolates(inputgraph2); 
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SourceCompare.computeConfusionMatrix(graph1, graph2); 
 
                            int[][] confusion = 
SourceCompare.getConfusionMatrix(); 
 
                            SourceCompare.computePctOverlap(graph1, 
graph2); 
 
                            CohenKappa[i - 1][j - 1] = 1 - 
BinarySimilarity.CohenKappa(confusion); 
                            if (Float.isNaN(CohenKappa[i - 1][j - 
1])) { 
                                CohenKappa[i - 1][j - 1] = 1.5f; 
                                CohenWeights[i - 1][j - 1] = 0; 
                            } else { 
                                CohenWeights[i - 1][j - 1] = 
SourceCompare.getPctOverlap(); 
                            } 
 
                            Gini[i - 1][j - 1] = -
BinarySimilarity.Gini(confusion); 
                            if (Float.isNaN(Gini[i - 1][j - 1])) { 
                                Gini[i - 1][j - 1] = 4f / 3; 
                                GiniWeights[i - 1][j - 1] = 0; 
                            } else { 
                                GiniWeights[i - 1][j - 1] = 
SourceCompare.getPctOverlap(); 
                            } 
 
                            Dispersion[i - 1][j - 1] = 1f / 3 - 
BinarySimilarity.Dispersion(confusion); 
                            if (Float.isNaN(Dispersion[i - 1][j - 
1])) { 
                                Dispersion[i - 1][j - 1] = 2f / 3; 
                                DispersionWeights[i - 1][j - 1] = 0; 
                            } else { 
                                DispersionWeights[i - 1][j - 1] = 
SourceCompare.getPctOverlap(); 
                            } 
 
                            Anderberg[i - 1][j - 1] = .5f - 
BinarySimilarity.AnderbergD(confusion); 
                            if (Float.isNaN(Anderberg[i - 1][j - 
1])) { 
                                Anderberg[i - 1][j - 1] = .5f; 
                                AnderbergWeights[i - 1][j - 1] = 0; 
                            } else { 
                                AnderbergWeights[i - 1][j - 1] = 
SourceCompare.getPctOverlap(); 
                            } 
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                            Hamann[i - 1][j - 1] = 1 - 
BinarySimilarity.Hamann(confusion); 
                            if (Float.isNaN(Hamann[i - 1][j - 1])) { 
                                Hamann[i - 1][j - 1] = 2; 
                                HamannWeights[i - 1][j - 1] = 0; 
                            } else { 
                                HamannWeights[i - 1][j - 1] = 
SourceCompare.getPctOverlap(); 
                            } 
 
                            GKMax[i - 1][j - 1] = 1 - 
BinarySimilarity.GoodmanKruskalMax(confusion); 
                            if (Float.isNaN(GKMax[i - 1][j - 1])) { 
                                GKMax[i - 1][j - 1] = 2; 
                                GKMaxWeights[i - 1][j - 1] = 0; 
                            } else { 
                                GKMaxWeights[i - 1][j - 1] = 
SourceCompare.getPctOverlap(); 
                            } 
 
                            Pierce[i - 1][j - 1] = 1 - 
BinarySimilarity.PeirceIII(confusion); 
                            if (Float.isNaN(Pierce[i - 1][j - 1])) { 
                                Pierce[i - 1][j - 1] = 1; 
                                PierceWeights[i - 1][j - 1] = 0; 
                            } else { 
                                PierceWeights[i - 1][j - 1] = 
SourceCompare.getPctOverlap(); 
                            } 
                        } catch (RuntimeException ioe) { 
                            System.out.println("INPUT ERROR loading 
Graph 2: " + ioe.getMessage()); 
                        } 
                    } 
                } catch (RuntimeException ioe) { 
                    System.out.println("INPUT ERROR loading Graph 1: 
" + ioe.getMessage()); 
                } 
            } 
 
            MatrixManipulation.constructSymmMatrix(CohenKappa); 
            MatrixManipulation.constructSymmMatrix(CohenWeights); 
            MatrixManipulation.constructSymmMatrix(Gini); 
            MatrixManipulation.constructSymmMatrix(GiniWeights); 
            MatrixManipulation.constructSymmMatrix(Dispersion); 
            
MatrixManipulation.constructSymmMatrix(DispersionWeights); 
            MatrixManipulation.constructSymmMatrix(Anderberg); 
            
MatrixManipulation.constructSymmMatrix(AnderbergWeights); 
            MatrixManipulation.constructSymmMatrix(Hamann); 
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            MatrixManipulation.constructSymmMatrix(HamannWeights); 
            MatrixManipulation.constructSymmMatrix(GKMax); 
            MatrixManipulation.constructSymmMatrix(GKMaxWeights); 
            MatrixManipulation.constructSymmMatrix(Pierce); 
            MatrixManipulation.constructSymmMatrix(PierceWeights); 
 
            int[] CohenKeptSources = 
MatrixManipulation.findNonZeroRows(CohenWeights); 
            int[] GiniKeptSources = 
MatrixManipulation.findNonZeroRows(GiniWeights); 
            int[] DispersionKeptSources = 
MatrixManipulation.findNonZeroRows(DispersionWeights); 
            int[] AnderbergKeptSources = 
MatrixManipulation.findNonZeroRows(AnderbergWeights); 
            int[] HamannKeptSources = 
MatrixManipulation.findNonZeroRows(HamannWeights); 
            int[] GKMaxKeptSources = 
MatrixManipulation.findNonZeroRows(GKMaxWeights); 
            int[] PierceKeptSources = 
MatrixManipulation.findNonZeroRows(PierceWeights); 
 
            
MatrixManipulation.eliminateZeroRowsSymmetric(CohenWeights); 
            
MatrixManipulation.eliminateZeroRowsSymmetric(GiniWeights); 
            
MatrixManipulation.eliminateZeroRowsSymmetric(DispersionWeights); 
            
MatrixManipulation.eliminateZeroRowsSymmetric(AnderbergWeights); 
            
MatrixManipulation.eliminateZeroRowsSymmetric(HamannWeights); 
            
MatrixManipulation.eliminateZeroRowsSymmetric(GKMaxWeights); 
            
MatrixManipulation.eliminateZeroRowsSymmetric(PierceWeights); 
 
            
MatrixManipulation.keepIdentifiedRowsSymmetric(CohenKappa, 
CohenKeptSources); 
            MatrixManipulation.keepIdentifiedRowsSymmetric(Gini, 
GiniKeptSources); 
            
MatrixManipulation.keepIdentifiedRowsSymmetric(Dispersion, 
DispersionKeptSources); 
            
MatrixManipulation.keepIdentifiedRowsSymmetric(Anderberg, 
AnderbergKeptSources); 
            MatrixManipulation.keepIdentifiedRowsSymmetric(Hamann, 
HamannKeptSources); 
            MatrixManipulation.keepIdentifiedRowsSymmetric(GKMax, 
GKMaxKeptSources); 
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            MatrixManipulation.keepIdentifiedRowsSymmetric(Pierce, 
PierceKeptSources); 
 
            // Write results to output files 
            try { 
                
saveResults(MatrixManipulation.keepIdentifiedRowsSymmetric(CohenKapp
a, CohenKeptSources), numReliable, numUnreliable, CohenKeptSources, 
CohenOutputfilePrefix + Rep + ".txt"); 
            } catch (RuntimeException ioe) { 
                System.out.println("Cohen's Kappa OUTPUT RESULTS 
ERROR: " + ioe.getMessage()); 
            } 
            try { 
                
saveResults(MatrixManipulation.eliminateZeroRowsSymmetric(CohenWeigh
ts), numReliable, numUnreliable, CohenKeptSources, 
CohenOutputfilePrefix + WeightsPrefix + Rep + ".txt"); 
            } catch (RuntimeException ioe) { 
                System.out.println("Cohen's Kappa Weightings OUTPUT 
RESULTS ERROR: " + ioe.getMessage()); 
            } 
            try { 
                saveUnassessedSources(Rep, "CohenKappa", 
numReliable, numUnreliable, CohenKeptSources); 
            } catch (RuntimeException ioe) { 
                System.out.println("Cohen's Kappa Kept Sources 
OUTPUT RESULTS ERROR: " + ioe.getMessage()); 
            } 
            try { 
                
saveResults(MatrixManipulation.keepIdentifiedRowsSymmetric(Gini, 
GiniKeptSources), numReliable, numUnreliable, GiniKeptSources, 
GiniOutputfilePrefix + Rep + ".txt"); 
            } catch (RuntimeException ioe) { 
                System.out.println("Gini OUTPUT RESULTS ERROR: " + 
ioe.getMessage()); 
            } 
            try { 
                
saveResults(MatrixManipulation.eliminateZeroRowsSymmetric(GiniWeight
s), numReliable, numUnreliable, GiniKeptSources, 
GiniOutputfilePrefix + WeightsPrefix + Rep + ".txt"); 
            } catch (RuntimeException ioe) { 
                System.out.println("Gini Weightings OUTPUT RESULTS 
ERROR: " + ioe.getMessage()); 
            } 
            try { 
                saveUnassessedSources(Rep, "Gini", numReliable, 
numUnreliable, GiniKeptSources); 
            } catch (RuntimeException ioe) { 
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                System.out.println("Gini Kept Sources OUTPUT RESULTS 
ERROR: " + ioe.getMessage()); 
            } 
            try { 
                
saveResults(MatrixManipulation.keepIdentifiedRowsSymmetric(Dispersio
n, DispersionKeptSources), numReliable, numUnreliable, 
DispersionKeptSources, DispersionOutputfilePrefix + Rep + ".txt"); 
            } catch (RuntimeException ioe) { 
                System.out.println("Dispersion OUTPUT RESULTS ERROR: 
" + ioe.getMessage()); 
            } 
            try { 
                
saveResults(MatrixManipulation.eliminateZeroRowsSymmetric(Dispersion
Weights), numReliable, numUnreliable, DispersionKeptSources, 
DispersionOutputfilePrefix + WeightsPrefix + Rep + ".txt"); 
            } catch (RuntimeException ioe) { 
                System.out.println("Dispersion Weightings OUTPUT 
RESULTS ERROR: " + ioe.getMessage()); 
            } 
            try { 
                saveUnassessedSources(Rep, "Dispersion", 
numReliable, numUnreliable, DispersionKeptSources); 
            } catch (RuntimeException ioe) { 
                System.out.println("Dispersion Kept Sources OUTPUT 
RESULTS ERROR: " + ioe.getMessage()); 
            } 
            try { 
                
saveResults(MatrixManipulation.keepIdentifiedRowsSymmetric(Anderberg
, AnderbergKeptSources), numReliable, numUnreliable, 
AnderbergKeptSources, AnderbergOutputfilePrefix + Rep + ".txt"); 
            } catch (RuntimeException ioe) { 
                System.out.println("Anderberg OUTPUT RESULTS ERROR: 
" + ioe.getMessage()); 
            } 
            try { 
                
saveResults(MatrixManipulation.eliminateZeroRowsSymmetric(AnderbergW
eights), numReliable, numUnreliable, AnderbergKeptSources, 
AnderbergOutputfilePrefix + WeightsPrefix + Rep + ".txt"); 
            } catch (RuntimeException ioe) { 
                System.out.println("Anderberg Weightings OUTPUT 
RESULTS ERROR: " + ioe.getMessage()); 
            } 
            try { 
                saveUnassessedSources(Rep, "Anderberg", numReliable, 
numUnreliable, AnderbergKeptSources); 
            } catch (RuntimeException ioe) { 
                System.out.println("Anderberg Kept Sources OUTPUT 
RESULTS ERROR: " + ioe.getMessage()); 
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            } 
            try { 
                
saveResults(MatrixManipulation.keepIdentifiedRowsSymmetric(Hamann, 
HamannKeptSources), numReliable, numUnreliable, HamannKeptSources, 
HamannOutputfilePrefix + Rep + ".txt"); 
            } catch (RuntimeException ioe) { 
                System.out.println("Hamann OUTPUT RESULTS ERROR: " + 
ioe.getMessage()); 
            } 
            try { 
                
saveResults(MatrixManipulation.eliminateZeroRowsSymmetric(HamannWeig
hts), numReliable, numUnreliable, HamannKeptSources, 
HamannOutputfilePrefix + WeightsPrefix + Rep + ".txt"); 
            } catch (RuntimeException ioe) { 
                System.out.println("Hamann Weightings OUTPUT RESULTS 
ERROR: " + ioe.getMessage()); 
            } 
            try { 
                saveUnassessedSources(Rep, "Hamann", numReliable, 
numUnreliable, HamannKeptSources); 
            } catch (RuntimeException ioe) { 
                System.out.println("Hamann Kept Sources OUTPUT 
RESULTS ERROR: " + ioe.getMessage()); 
            } 
            try { 
                
saveResults(MatrixManipulation.keepIdentifiedRowsSymmetric(GKMax, 
GKMaxKeptSources), numReliable, numUnreliable, GKMaxKeptSources, 
GKMaxOutputfilePrefix + Rep + ".txt"); 
            } catch (RuntimeException ioe) { 
                System.out.println("GKMax OUTPUT RESULTS ERROR: " + 
ioe.getMessage()); 
            } 
            try { 
                
saveResults(MatrixManipulation.eliminateZeroRowsSymmetric(GKMaxWeigh
ts), numReliable, numUnreliable, GKMaxKeptSources, 
GKMaxOutputfilePrefix + WeightsPrefix + Rep + ".txt"); 
            } catch (RuntimeException ioe) { 
                System.out.println("GKMax Weightings OUTPUT RESULTS 
ERROR: " + ioe.getMessage()); 
            } 
            try { 
                saveUnassessedSources(Rep, "GKMax", numReliable, 
numUnreliable, GKMaxKeptSources); 
            } catch (RuntimeException ioe) { 
                System.out.println("GKMax Kept Sources OUTPUT 
RESULTS ERROR: " + ioe.getMessage()); 
            } 
            try { 
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saveResults(MatrixManipulation.keepIdentifiedRowsSymmetric(Pierce, 
PierceKeptSources), numReliable, numUnreliable, PierceKeptSources, 
PierceOutputfilePrefix + Rep + ".txt"); 
            } catch (RuntimeException ioe) { 
                System.out.println("Pierce OUTPUT RESULTS ERROR: " + 
ioe.getMessage()); 
            } 
            try { 
                
saveResults(MatrixManipulation.eliminateZeroRowsSymmetric(PierceWeig
hts), numReliable, numUnreliable, PierceKeptSources, 
PierceOutputfilePrefix + WeightsPrefix + Rep + ".txt"); 
            } catch (RuntimeException ioe) { 
                System.out.println("Pierce Weightings OUTPUT RESULTS 
ERROR: " + ioe.getMessage()); 
            } 
            try { 
                saveUnassessedSources(Rep, "Pierce", numReliable, 
numUnreliable, PierceKeptSources); 
            } catch (RuntimeException ioe) { 
                System.out.println("Pierce Kept Sources OUTPUT 
RESULTS ERROR: " + ioe.getMessage()); 
            } 
        } 
    } 
 
    private static void saveResults(float[][] matrix, int 
numReliable, int numUnreliable, int[] keptsources, String filename) 
throws RuntimeException { 
        try { 
            BufferedWriter writer = new BufferedWriter(new 
FileWriter(directory + filename)); 
 
            for (int index = 1; index <= (numReliable + 
numUnreliable); index++) { 
                if (keptsources[index-1] > 0) { 
                    if (index <= numReliable) { 
                        writer.write(RSprefix + 
Integer.toString(index) + "\t"); 
                    } else { 
                        writer.write(USprefix + 
Integer.toString(index - numReliable) + "\t"); 
                    } 
                } 
            } 
            writer.write("\r\n"); 
 
            for (int i = 0; i < matrix.length; i++) { 
                for (int j = 0; j < matrix[i].length; j++) { 
                    writer.write(Float.toString(matrix[i][j]) + 
"\t"); 
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                } 
                writer.write("\r\n"); 
            } 
            writer.close(); 
        } catch (Exception e) { 
            throw new RuntimeException("Error saving file: " + 
directory + filename, e); 
        } 
    } 
 
        private static void saveUnassessedSources(int Rep, String 
measure, int numReliable, int numUnreliable, int[] keptsources) 
throws RuntimeException { 
        try { 
            BufferedWriter writer = new BufferedWriter(new 
FileWriter(directory + measure + Rep + unassessedSourcesFile)); 
 
            writer.write(directory + "\t"); 
            writer.write(Rep + "\t"); 
            writer.write(measure + "\t"); 
            writer.write(numReliable + "\t"); 
            writer.write(numUnreliable + "\t"); 
 
            for (int index = 1; index <= (numReliable + 
numUnreliable); index++) { 
                if (keptsources[index-1] == 0) { 
                    if (index <= numReliable) { 
                        writer.write(RSprefix + 
Integer.toString(index) + "\t"); 
                    } else { 
                        writer.write(USprefix + 
Integer.toString(index - numReliable) + "\t"); 
                    } 
                } 
            } 
            writer.write("\r\n"); 
            writer.close(); 
        } catch (Exception e) { 
            throw new RuntimeException("Error saving file: " + 
directory + measure + Rep + unassessedSourcesFile, e); 
        } 
    } 
} 
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G.2 SourceCompare.java 

package morris.james.sna.sources; 
 
import edu.uci.ics.jung.graph.Graph; 
import edu.uci.ics.jung.graph.util.EdgeType; 
import edu.uci.ics.jung.graph.util.Pair; 
 
import java.util.Collection; 
import org.apache.commons.collections15.CollectionUtils; 
 
/** 
 * Compare two sources' social network models. 
 * 
 * @author James Morris 
 * December 15, 2011 
 */ 
public class SourceCompare { 
 
    private static int[][] ConfusionMatrix = {{0, 0}, {0, 0}}; 
    private static int intersectionsize = 0; 
    private static float PCToverlap = 0; 
 
    /* 
     * Computes the Confusion Matrix for the two inputted graphs 
     */ 
    public static void computeConfusionMatrix(Graph graph1, Graph 
graph2) { 
 
        initializeConfusionMatrix(); 
 
        // Undirected Graphs 
        if ((graph1.getDefaultEdgeType() == EdgeType.UNDIRECTED) && 
(graph1.getDefaultEdgeType() == EdgeType.UNDIRECTED)) { 
            for (Object edge1 : graph1.getEdges()) { 
                Pair nodes = graph1.getEndpoints(edge1); 
                Object node1 = nodes.getFirst(); 
                Object node2 = nodes.getSecond(); 
 
                if (graph2.containsVertex(node1) && 
graph2.containsVertex(node2)) { 
                    if (graph2.isNeighbor(node1, node2)) { 
                        ConfusionMatrix[0][0]++; 
                    } else { 
                        ConfusionMatrix[0][1]++; 
                    } 
                } 
            } 
 
            for (Object edge2 : graph2.getEdges()) { 
                Pair nodes = graph2.getEndpoints(edge2); 
                Object node1 = nodes.getFirst(); 
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                Object node2 = nodes.getSecond(); 
                if (graph1.containsVertex(node1) && 
graph1.containsVertex(node2)) { 
                    if (!graph1.isNeighbor(node1, node2)) { 
                        ConfusionMatrix[1][0]++; 
                    } 
                } 
            } 
 
            int intersectsize = 
CollectionUtils.intersection(graph1.getVertices(), 
graph2.getVertices()).size(); 
            ConfusionMatrix[1][1] = (intersectsize * (intersectsize 
- 1) / 2) - ConfusionMatrix[0][0] - ConfusionMatrix[0][1] - 
ConfusionMatrix[1][0]; 
        } 
 
        // Directed Graphs 
        if ((graph1.getDefaultEdgeType() == EdgeType.DIRECTED) && 
(graph1.getDefaultEdgeType() == EdgeType.DIRECTED)) { 
            for (Object node1 : graph1.getVertices()) { 
                for (Object node2 : graph1.getVertices()) { 
                    if (!node1.equals(node2) && 
graph2.containsVertex(node1) && graph2.containsVertex(node2)) { 
                        if (graph1.isPredecessor(node1, node2)) { 
                            if (graph2.isPredecessor(node1, node2)) 
{ 
                                ConfusionMatrix[0][0]++; 
                            } else { 
                                ConfusionMatrix[0][1]++; 
                            } 
                        } else if (graph2.isPredecessor(node1, 
node2)) { 
                            ConfusionMatrix[1][0]++; 
                        } else { 
                            ConfusionMatrix[1][1]++; 
                        } 
                    } 
                } 
            } 
        } 
//        System.out.println("Confusion Matrix"); 
//        System.out.print(new Integer(confusion[0][0]).toString() + 
"\t"); 
//        System.out.println(new 
Integer(confusion[0][1]).toString()); 
//        System.out.print(new Integer(confusion[1][0]).toString() + 
"\t"); 
//        System.out.println(new 
Integer(confusion[1][1]).toString()); 
    } 
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    /* 
     * Returns the Confusion Matrix 
     */ 
    public static int[][] getConfusionMatrix() { 
        return ConfusionMatrix; 
    } 
 
    /* 
     * Iniatilizes the Confusion Matrix 
     */ 
    private static void initializeConfusionMatrix() { 
        ConfusionMatrix[0][0] = 0; 
        ConfusionMatrix[0][1] = 0; 
        ConfusionMatrix[1][0] = 0; 
        ConfusionMatrix[1][1] = 0; 
    } 
 
 
    /* 
     * Gets the Jaccard weightings for the two inputted graphs 
     * Confirmed nominations + disputed nominations 
     */ 
    public static float getJaccardWeightings() { 
        return (ConfusionMatrix[0][0] + ConfusionMatrix[0][1] + 
ConfusionMatrix[1][0]); 
    } 
 
    /* 
     * Computes Percent Nodes Overlap. 
     * Percent Overlap is |N1 intersection N2|/|N1 union N2| 
     */ 
    public static void computePctOverlap(Graph graph1, Graph graph2) 
{ 
        Collection graph1nodes = graph1.getVertices(); 
        Collection graph2nodes = graph2.getVertices(); 
        int unionsize = CollectionUtils.union(graph1.getVertices(), 
graph2.getVertices()).size(); 
        int intersectsize = 
CollectionUtils.intersection(graph1.getVertices(), 
graph2.getVertices()).size(); 
        PCToverlap = (float) intersectsize / unionsize; 
//        System.out.println("Union Size: " + unionsize); 
//        System.out.println("Intersection Size: " + intersectsize); 
    } 
 
 /* 
     * Gets Percent Nodes Overlap. 
     * Percent Overlap is |N1 intersection N2|/|N1 union N2| 
     */ 
    public static float getPctOverlap() { 
        return PCToverlap; 
//        System.out.println("Union Size: " + unionsize); 
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//        System.out.println("Intersection Size: " + intersectsize); 
    } 
 
    /* 
     * Computes Size of Intersection of Nodes.  |N1 intersection N2| 
     */ 
    public static void computeNodeIntersectSize(Graph graph1, Graph 
graph2) { 
        Collection graph1nodes = graph1.getVertices(); 
        Collection graph2nodes = graph2.getVertices(); 
        intersectionsize = 
CollectionUtils.intersection(graph1.getVertices(), 
graph2.getVertices()).size(); 
//        System.out.println("Intersection Size: " + 
intersectionsize); 
    } 
 
    /* 
     * Returns Size of Intersection of Nodes.  |N1 intersection N2| 
     */ 
    public static int getNodeIntersectSize() { 
        return intersectionsize; 
//        System.out.println("Intersection Size: " + 
intersectionsize); 
    } 
} 
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